首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
航天技术   1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
Research has been conducted in Semarang, Indonesia, to assess coastal vulnerability under enhanced land subsidence using multi-sensor satellite data, including the Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR), Landsat TM, IKONOS, and TOPEX/Poseidon. A coastal vulnerability index (CVI) was constructed to estimate the level of vulnerability of a coastline approximately 48.68?km in length using seven physical variables, namely, land subsidence, relative sea level change, coastal geomorphology, coastal slope, shoreline change, mean tidal range, and significant wave height. A comparison was also performed between a CVI calculated using seven parameters and a CVI using six parameters, the latter of which excludes the land subsidence parameter, to determine the effects of land subsidence during the coastal vulnerability assessment. This study showed that the accuracy of coastal vulnerability was increased 40% by adding the land subsidence factor (i.e., CVI 6 parameters?=?53%, CVI 7 parameters?=?93%). Moreover, Kappa coefficient indicated very good agreement (0.90) for CVI 7 parameters and fair agreement (0.3) for CVI 6 parameters. The results indicate that the area of very high vulnerability increased by 7% when land subsidence was added. Hence, using the CVI calculation including land subsidence parameters, the very high vulnerability area is determined to be 20% of the total coastline or 9.7?km of the total 48.7?km of coastline. This study proved that land subsidence has significant influence on coastal vulnerability in Semarang.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号