首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航空   4篇
航天技术   6篇
航天   4篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1980年   1篇
排序方式: 共有14条查询结果,搜索用时 234 毫秒
1.
In this paper, we review current estimates of the global water inventory of Mars, potential loss mechanisms, the thermophysical characteristics of the different reservoirs that water may be currently stored in, and assess how the planet’s hydrosphere and cryosphere evolved with time. First, we summarize the water inventory quantified from geological analyses of surface features related to both liquid water erosion, and ice-related landscapes. They indicate that, throughout most of Martian geologic history (and possibly continuing through to the present day), water was present to substantial depths, with a total inventory ranging from several 100 to as much as 1000 m Global Equivalent Layer (GEL). We then review the most recent estimates of water content based on subsurface detection by orbital and landed instruments, including deep penetrating radars such as SHARAD and MARSIS. We show that the total amount of water measured so far is about 30 m GEL, although a far larger amount of water may be stored below the sounding depths of currently operational instruments. Finally, a global picture of the current state of the subsurface water reservoirs and their evolution is discussed.  相似文献   
2.
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.  相似文献   
3.
In the frame of the 2009 Mars Science Laboratory (MSL) mission a new sample preparation system (SPS) compatible with gas chromatography–mass spectrometry (GC–MS) has been developed for the in situ analysis of complex organic molecules in the Martian soil. The goal is to detect, if they exist, some of the key compounds that play an important role in life on Earth including carboxylic acids, amino acids and nucleobases.  相似文献   
4.
Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.  相似文献   
5.
Observation of Mars shows signs of a past Earth-like climate, and, in that case, there is no objection to the possible development of life, in the underground or at the surface, as in the terrestrial primitive biosphere. Sample analysis at Mars (SAM) is an experiment which may be proposed for atmospheric, ground and underground in situ measurements. One of its goals is to bring direct or indirect information on the possibility for life to have developed on Mars, and to detect traces of past or present biological activity. With this aim, it focuses on the detection of organic molecules: volatile organics are extracted from the sample by simple heating, whereas refractory molecules are made analyzable (i.e. volatile), using derivatization technique or fragmentation by pyrolysis. Gaseous mixtures thus obtained are analyzed by gas chromatography associated to mass spectrometry. Beyond organics, carbonates and other salts are associated to the dense and moist atmosphere necessary to the development of life, and might have formed and accumulated in some places on Mars. They represent another target for SAM. Heating of the samples allows the analysis of structural gases of these minerals (CO2 from carbonates, etc.), enabling to identify them. We also show, in this paper, that it may be possible to discriminate between abiotic minerals, and minerals (shells, etc.) created by living organisms.  相似文献   
6.
In the present work, we focused on the possible isotopic fractionation of carbon during the processes involved in the formation of Titan’s tholins. We present the first results obtained on the 12C/13C isotopic ratios measured on Titan’s tholins synthesized in laboratory with cold plasma discharges. Measurements of isotopic ratio 12C/13C, done both on tholins and on the initial gas mixture (N2:CH4 (98:2)) used to produce them, do not show any evident deficit or enrichment in 13C relatively to 12C in the synthesized tholins, compared to the initial gas mixture. This observation allows to go further in the analyses of the ACP experiment data, including part of the Cassini–Huygens mission.  相似文献   
7.
8.
The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150?h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.  相似文献   
9.
The life on Mars remains an open question because of the lack of proof of its past emergence and its current presence. The only indices of a potential Martian life were provided by the Viking Landers, and the study of the Martian meteorite ALH84001 discovered in the Antarctic. In the two case, the results of experiments could be explained either by the presence of life forms or by abiotic processes. The recent data of Mars Express orbiter and Mars Exploration Rovers show different proofs of a past environment favourable for life. Among the targets we seek, the organic molecules are primordial because they are necessary to the origin of life. A key question is to know if they are present, in which concentration and under which form. Within the framework of a search for organic, we are developing an experimental setup simulating as close as possible the environmental conditions of Mars surface in order to determine how organic species evolve. We present here the first step of the development of this experiment which focuses on the study of the impact of the solar UV radiations reaching the Mars surface on glycine. First results show that glycine does not resist if directly exposed to UV radiations.  相似文献   
10.
To understand the evolution of organic molecules involved in extraterrestrial environments and with exobiological implications, many experimental programs in the laboratory are devoted to photochemical studies in the gaseous phase as well as in the solid state. The validity of such studies and their applications to extraterrestrial environments can be questioned as long as experiments conducted in space conditions, with the full solar spectrum, especially in the short wavelength domain, have not been implemented. The experiments that are described here will be carried out on a FOTON capsule, using the BIOPAN facility, and on the International Space Station, using the EXPOSE facility. Vented and sealed exposition cells will be used, which will allow us to study the chemical evolution in the gaseous phase as well as heterogeneous processes, such as the degradation of solid compounds and the release of gaseous fragments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号