首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   1篇
航天技术   1篇
航天   2篇
  2018年   1篇
  2013年   1篇
  2011年   2篇
排序方式: 共有4条查询结果,搜索用时 140 毫秒
1
1.
Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω=gk), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to gain further insight into solar magnetic structures by means of solar magneto-seismology, and could provide further insight into the role of magnetism in solar oscillations.  相似文献   
2.
The energetic particle experiment MEP-2 onboard the Spectr-R high apogee satellite is briefly described. The instrument measures fluxes and spectra of electrons (30 keV–350 keV) and ions (30 keV–3.2MeV), using two pairs of silicon detectors. The example of first observations upstream from the bow shock illustrates its successful operation in space. Unique observations of ~30 s strong fluctuations of energetic ions with energies up to two hundred keV are discussed.  相似文献   
3.
Helioseismology is practically the only efficient experimental way of probing the solar interior. Without it, the results of theoretical solar models would remain untested and, consequently, less reliable when applying them for investigating remote stars. Hence, having a firm understanding of the applicability and reliability of helioseismology and the awareness of its limits are essential in solar physics and also in astrophysics. One of the weaknesses of the currently popular helioseismic models is that they allow only limited interaction between the global acoustic oscillation modes and the magnetic lower solar atmosphere, although, observations confirm strong coupling of helioseismic oscillations to the atmospheric magnetic field. The present article overviews the attempts of taking into account atmospheric magnetic effects in the theoretical models of global solar oscillations.  相似文献   
4.
This paper is about a pilot application of narrative psychological content analysis in the psychological status monitoring of Crew 71 of a space analog simulation environment, the Mars Desert Research Station (MDRS). Both the method and its theoretical framework, Scientific Narrative Psychology, are original developments by Hungarian psychologists [5] (László, 2008). The software was NooJ, a multilingual linguistic development environment [11] (Silberztein, 2008). Three measures were conceptualized and assessed: emotional status, team spirit and subjective physical comfort. The results showed the patterns of these three measures on a daily basis at group level, and allowed for detecting individual differences as well. The method is adaptable to languages involved in space psychology, e.g. Russian, French and German in addition to English.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号