首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
航天技术   9篇
航天   2篇
  2018年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2005年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Particle detectors of worldwide networks are continuously measuring various secondary particle fluxes incident on Earth surface. At the Aragats Space Environmental Center (ASEC), the data of 12 cosmic ray particle detectors with a total of ∼280 measuring channels (count rates of electrons, muons and neutrons channels) are sent each minute via wireless bridges to a MySQL database. These time series are used for the different tasks of off-line physical analysis and for online forewarning services. Usually long time series contain several types of errors (gaps due to failures of high or low voltage power supply, spurious spikes due to radio interferences, abrupt changes of mean values of several channels or/and slowly trends in mean values due to aging of electronics components, etc.). To avoid erroneous physical inference and false alarms of alerting systems we introduce offline and online filters to “purify” multiple time-series. In the presented paper we classify possible mistakes in time series and introduce median filtering algorithms for online and off-line “purification” of multiple time-series.  相似文献   
2.
The recent interest in the use of ultrasound (US) to detect pneumothoraces after acute trauma in North America was initially driven by an operational space medicine concern. Astronauts aboard the International Space Station (ISS) are at risk for pneumothoraces, and US is the only potential medical imaging available. Pneumothoraces are common following trauma, and are a preventable cause of death, as most are treatable with relatively simple interventions. While pneumothoraces are optimally diagnosed clinically, they are more often inapparent even on supine chest radiographs (CXR) with recent series reporting a greater than 50% rate of occult pneumothoraces. In the course of basic scientific investigations in a conventional and parabolic flight laboratory, investigators familiarized themselves with the sonographic features of both pneumothoraces and normal pulmonary ventilation. By examining the visceral–parietal pleural interface (VPPI) with US, investigators became confident in diagnosing pneumothoraces. This knowledge was subsequently translated into practice at an American and a Canadian trauma center. The sonographic examination was found to be more accurate and sensitive than CXR (US 96% and 100% versus US 74% and 36%) in specific circumstances. Initial studies have also suggested that detecting the US features of pleural pulmonary ventilation in the left lung field may offer the ability to exclude serious endotracheal tube malpositions such as right mainstem and esophageal intubations. Applied thoracic US is an example of a clinically useful space medicine spin-off that is improving health care on earth.  相似文献   
3.
The Space Environment Viewing and Analysis Network (SEVAN) aims to improve the fundamental research on particle acceleration in the vicinity of the sun, on space weather effects and on high-energy physics in the atmosphere and lightning initiation. This new type of a particle detector setup simultaneously measures fluxes of most species of secondary cosmic rays, thus being a powerful integrated device for exploration of solar modulation effects and electron acceleration in the thunderstorm atmosphere. The SEVAN modules are operating at the Aragats Space Environmental Center (ASEC) in Armenia, in Croatia, Bulgaria, Slovakia, the Czech Republic (from 2017) and in India. In this paper, we present the most interesting results of the SEVAN network operation during the last decade. We present this review on the occasion of the 10th anniversary of the International Heliophysical Year in 2007.  相似文献   
4.
Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East–West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.  相似文献   
5.
After the major modernization of the data acquisition electronics of the particle detectors operated at Aragats Space Environmental Center (ASEC) calculations of the barometric coefficients of all the monitors were performed in the beginning of the 24th solar activity cycle. The barometric coefficients of particle detectors located at altitudes of 1000 m, 2000 m and 3200 m a.s.l. measuring various secondary cosmic ray fluxes were compared with theoretical expectations and monitors operated on different longitudes and latitudes. The barometric coefficients were also calculated for the several neutron monitors of recently established Eurasian database (NMDB) and SEVAN particle detector networks. The latitude and altitude dependencies of the barometric coefficients were investigated, as well as the dependence of coefficients on energy of the primary particles.  相似文献   
6.
Management of health problems in limited resource environments, including spaceflight, faces challenges in both available equipment and personnel. The medical support for spaceflight outside Low Earth Orbit is still being defined; ultrasound (US) imaging is a candidate since trials on the International Space Station (ISS) prove that this highly informative modality performs very well in spaceflight. Considering existing estimates, authors find that US could be useful in most potential medical problems, as a powerful factor to mitigate risks and protect mission. Using outcome-oriented approach, an intuitive and adaptive US image catalog is being developed that can couple with just-in-time training methods already in use, to allow non-expert crew to autonomously acquire and interpret US data for research or diagnosis.The first objective of this work is to summarize the experience in providing imaging expertise from a central location in real time, enabling data collection by a minimally trained operator onsite. In previous investigations, just-in-time training was combined with real-time expert guidance to allow non-physician astronauts to perform over 80 h of complex US examinations on ISS, including abdominal, cardiovascular, ocular, musculoskeletal, dental/sinus, and thoracic exams. The analysis of these events shows that non-physician crew-members, after minimal training, can perform complex, quality US examinations. These training and guidance methods were also adapted for terrestrial use in professional sporting venues, the Olympic Games, and for austere locations including Mt. Everest.The second objective is to introduce a new imaging support system under development that is based on a digital catalog of existing sample images, complete with image recognition and acquisition logic and technique, and interactive multimedia reference tools, to guide and support autonomous acquisition, and possibly interpretation, of images without real-time link with a human expert. In other words, we are attempting to replace, to the extent possible, expert guidance by guidance from a digital information resource. This is a next logical phase of the authors’ sustained effort to make US imaging available to sites lacking proper expertise. This effort will benefit NASA as the agency plans to develop future human exploration programs requiring increased medical autonomy. The new system will be readily adaptable to terrestrial medicine including emergency, rural, and military applications.  相似文献   
7.
A study of daily variations of secondary Cosmic Rays (CR) is performed using data on charged and neutral CR fluxes. Particle detectors of Aragats Space-Environmental Center (ASEC), Space Environmental Viewing and Analysis Network (SEVAN) and neutron monitors of the Neutron Monitor Database (NMDB) are used. ASEC detectors continuously register various species of secondary CR with different threshold energies and incident angles. NMDB joins data of 12 Eurasian neutron monitors. Data at the beginning of the 24th solar activity cycle are used to avoid biases due to solar transient events and to establish a benchmark for the monitoring of solar activity in the new started solar cycle.  相似文献   
8.
Huge magnetic clouds of plasma emitted by the Sun dominate intense geomagnetic storm occurrences and simultaneously they are correlated with variations of spectra of particles and nuclei in the interplanetary space, ranging from subtermal solar wind ions till GeV energy galactic cosmic rays. For a reliable and fast forecast of Space Weather world-wide networks of particle detectors are operated at different latitudes, longitudes, and altitudes. Based on a new type of hybrid particle detector developed in the context of the International Heliophysical Year (IHY 2007) at Aragats Space Environmental Center (ASEC) we start to prepare hardware and software for the first sites of Space Environmental Viewing and Analysis Network (SEVAN). In the paper the architecture of the newly developed data acquisition system for SEVAN is presented. We plan to run the SEVAN network under one-and-the-same data acquisition system, enabling fast integration of data for on-line analysis of Solar Flare Events. An Advanced Data Acquisition System (ADAS) is designed as a distributed network of uniform components connected by Web Services. Its main component is Unified Readout and Control Server (URCS) which controls the underlying electronics by means of detector specific drivers and makes a preliminary analysis of the on-line data. The lower level components of URCS are implemented in C and a fast binary representation is used for the data exchange with electronics. However, after preprocessing, the data are converted to a self-describing hybrid XML/Binary format. To achieve better reliability all URCS are running on embedded computers without disk and fans to avoid the limited lifetime of moving mechanical parts. The data storage is carried out by means of high performance servers working in parallel to provide data security. These servers are periodically inquiring the data from all URCS and storing it in a MySQL database. The implementation of the control interface is based on high level web standards and, therefore, all properties of the system can be remotely managed and monitored by the operators using web browsers. The advanced data acquisition system at ASEC in Armenia was started in November, 2006. The reliability of the multi-client service was proven by continuously monitoring neutral and charged cosmic ray particles. Seven particle monitors are located at 2000 and 3200 m above sea level at a distance of 40 and 60 km from the main data server.  相似文献   
9.
The Aragats Solar Environment Center provides real time monitoring of different components of secondary cosmic ray fluxes. We plan to use this information to establish an early warning alert system against extreme, very large solar particle events with hard spectra, dangerous for satellite electronics and for the crew of the Space Station. Neutron monitors operating at altitude 2000 and 3200 m are continuously gathering data to detect possible abrupt variations of the particle count rates. Additional high precision detectors measuring muon and electron fluxes, along with directional information are under construction on Mt. Aragats. Registered ground level enhancements, in neutron and muon fluxes along with correlations between different species of secondary cosmic rays are analyzed to reveal possible correlations with expected times of arrival of dangerous solar energetic particles.  相似文献   
10.
On January 20, 2005, 7:02–7:04 UT the Aragats Multichannel Muon Monitor (AMMM) registered enhancement of the high energy secondary muon flux (energy threshold ∼5 GeV). The enhancement, lasting 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES satellite and the ground level enhancement detected by the world-wide network of neutron monitors and by muon detectors. The most probable proton energy corresponding to the measured 5 GeV muon flux is within 23–30 GeV. Due to upmost importance of the detection of solar particles of highest energies in presented paper we perform detailed statistical analysis of the detected peak. The statistical technique introduced in the paper is also appropriate for the searches of sources of ultra-high energy cosmic rays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号