首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航天技术   5篇
综合类   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  1991年   1篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
本文讨论了在无替换定效截尾试验方案下,当产品寿命为双参数指数分布时,尺度参数(失效率)久的经验Bayes(简记EB)估计问题及其收敛速度。设在给定λ,μ下,产品寿命T服从双参数指数分布,其概率密度为 受试产品有n个,试验中前r个产品依次出现的失效时间为t_(1)≤t_(2)≤……≤t_(r)。令 则(x,y)为(μ,λ)的充分统计量。记(x,y)的联合边缘密度为f(x,y),若取二次损失函数,则λ的Bayes点估计为 利用密度函数及其偏导数的核估计,构造出λ的EB估计为 φ_(1n)(x,y)与φ_(1m)(x,y)的Bayes风险分别为 在一定的正则性条件下,我们证明了 这表明,λ的EB估计的收敛速度q可任意接近于1/2。  相似文献   
2.
Rayleigh optical depth is an integral part of many radiative transfer problems. This paper discusses different elements and approaches of its determination. Then, it presents a method, which ensures more realistic estimate of Rayleigh optical depth by using refractive index and depolarization factor (including rotational Raman lines) adjusted according to the state and composition of the atmosphere. It is based on the published experimental and theoretical results. The Rayleigh optical depth calculations are compared with the Elterman’s model calculations for trend analysis purpose. Rayleigh optical depths are found to be around 3.4% lower than previous researchers, as they ignored the constraints of conservation of angular momentum in the rotational/vibrational transitions of the molecules during scattering.  相似文献   
3.
The data on thermal fluctuations of the topside ionosphere have been measured by Retarding Potential Analyser (RPA) payload aboard the SROSS-C2 satellite over the Indian region for half of the solar cycle (1995–2000). The data on solar flare has been obtained from National Geophysical Data Center (NGDC) Boulder, Colorado (USA) and other solar indices (solar radio flux and sunspot number) were download from NGDC website. The ionospheric electron and ion temperatures show a consistent enhancement during the solar flares. The enhancement in the electron temperature is 28–92% and for ion temperature it is 18–39% compared to the normal day’s average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the variation of sunspot and solar radio flux (F10.7cm). All the events studied in the present paper fall in the category of subflare with almost same intensity. The ionospheric electron and ion temperatures enhancement have been compared with the IRI model values.  相似文献   
4.
Over the last few years, dynamo theorists seem to be converging on a basic scenario as to how the solar dynamo operates. The strong toroidal component of the magnetic field is produced in the tachocline, from where it rises due to magnetic buoyancy to produce active regions at the solar surface. The decay of tilted bipolar active regions at the surface gives rise to the poloidal component, which is first advected poleward by the meridional circulation and then taken below the surface to the tachocline where it can be stretched to produce the toroidal component. The mathematical formulation of this basic model, however, involves the specification of some parameters which are still uncertain. We review these remaining uncertainties which have resulted in disagreements amongst various research groups and have made it impossible to still arrive at something that can be called a standard model of the solar dynamo.  相似文献   
5.
To study the variation of ionospheric electron and ion temperatures with solar activity the data of electron and ion temperatures were recorded with the help of Retarding Potential Analyzer payload aboard Indian SROSS-C2 satellite at an average altitude of ∼500 km. The main focuses of the paper is to see the diurnal, seasonal and latitudinal variations of electron and ion temperatures during periods of minimum to maximum solar activity. The ionospheric temperatures in the topside show strong variations with altitude, latitude, season and solar activity. In present study, the temperature variations with latitude, season and solar activity have been studied at an average altitude ∼500 km. The peak at sunrise has been observed during all seasons, in both electron and ion temperatures. Further, the ionospheric temperatures vary with latitude in day time. The latitudinal variation is more pronounced for low solar activity than for high solar activity.  相似文献   
6.
Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号