首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
航空   2篇
航天技术   5篇
航天   4篇
  2018年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有11条查询结果,搜索用时 843 毫秒
1.
Vegetable cultivation plays a crucial role in dietary supplements and psychosocial benefits of the crew during manned space flight. Here we developed a ground-based prototype of horn-type sequential vegetable production facility, named Horn-type Producer (HTP), which was capable of simulating the microgravity effect and the continuous cultivation of leaf–vegetables on root modules. The growth chamber of the facility had a volume of 0.12 m3, characterized by a three-stage space expansion with plant growth. The planting surface of 0.154 m2 was comprised of six ring-shaped root modules with a fibrous ion-exchange resin substrate. Root modules were fastened to a central porous tube supplying water, and moved forward with plant growth. The total illuminated crop area of 0.567 m2 was provided by a combination of red and white light emitting diodes on the internal surfaces. In tests with a 24-h photoperiod, the productivity of the HTP at 0.3 kW for lettuce achieved 254.3 g eatable biomass per week. Long-term operation of the HTP did not alter vegetable nutrition composition to any great extent. Furthermore, the efficiency of the HTP, based on the Q-criterion, was 7 × 10−4 g2 m−3 J−1. These results show that the HTP exhibited high productivity, stable quality, and good efficiency in the process of planting lettuce, indicative of an interesting design for space vegetable production.  相似文献   
2.
We present results of optical follow-up observations of candidate ultra-luminous X-ray sources (ULXs). Using Keck optical spectroscopy, 17 of the candidates from the Colbert and Ptak [Colbert, E.J.M., Ptak, A.F. A catalog of candidate intermediate-luminosity X-ray objects. ApJS 143, 25–45, 2002] catalog have been identified; this is one of the largest sets of optical identifications of such objects thus far. Fifteen are background active galactic nuclei (AGN); two are foreground stars in our Galaxy. These findings are consistent with background and foreground object expectations, as derived from log N–log S relations. Also, the results are briefly discussed in terms of the spiral-galaxy/ULX connection.  相似文献   
3.
An algorithm to control the aircraft trajectory is proposed. This algorithm is based on the dynamic stochastic systems optimal control theory. The optimal control implementation is shown to reduce the deviation of the controlled trajectory from the predetermined one. The optimal control is based on estimating phase coordinates with the high accuracy by the global navigation satellite system.  相似文献   
4.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
5.
Here we propose that the radioresistance (tolerance to ionizing radiation) observed in several terrestrial bacteria has a martian origin. Multiple inconsistencies with the current view of radioresistance as an accidental side effect of tolerance to desiccation are discussed. Experiments carried out 25 years ago were reproduced to demonstrate that "ordinary" bacteria can develop high radioresistance ability after multiple cycles of exposure to high radiation dosages followed by cycles of recovery of the bacterial population. We argue that "natural" cycles of this kind could have taken place only on the martian surface, and we hypothesize that Mars microorganisms could have developed radioresistance in just several million years' time and, subsequently, have undergone transfer to Earth by way of martian meteorites. Our mechanism implies multiple and frequent exchanges of biota between Mars and Earth.  相似文献   
6.
The time course of gravicurvature of 3-day-old wheat (Triticum aestivum L., cv. Apogee) coleoptiles and 7-day-old wheat stems were studied in darkness and under red and red-blue light illumination after declination from the vertical at various angles. The experiments showed that the shortest gravitropic curvature corresponded to 30° initial angle of gravistimulation (IAG). The time course became longer as the IAG increased and with plant age. The effects of unilateral red (660 nm) and red-blue light (660 nm; 470 nm) at photosynthetic photon flux (PPF) of 30 μmol m−2 s−1 on the curvature of 3-day-old coleoptiles were evaluated. Red light did not produce phototropic bending of wheat coleoptiles in contrast with red-blue light. The analysis of experimental data showed that the curvature in response to a gravitropic stimulus or to combined gravity-light stimuli were not statistically different. Time course of gravitropic curvature were used to determine the acceptable crop rotation rate around the horizontal axis. Approximation of stem bending to a linear dynamic system described by a first-order aperiodic element with a lag allowed the determination of the dependence of the amplitude of apex oscillations on the rate of horizontal rotation under 1-g conditions. The calculated lowest minimal rotation rate (MRR) minimizing the gravitropic effects on wheat was about 1 revolution per hour (rph). Rotating the plant growth chamber (PGC) at a rate of more than MRR eliminated the effect of gravitropic curvature.  相似文献   
7.
It is shown that the excesses in the sum of fluxes (e + + e ?) in cosmic rays in the energy range (10–1000) GeV and in the flux ratio e +/(e + + e ?) in the range > 10 GeV, observed both in recent and old experiments, can be explained by an accelerator of charged particles operating on the heliosphere periphery, in the region beyond the termination shock of the solar wind (~100 AU). Variations in the value and position of peculiarities in the spectra (e + + e ?), as well as increasing ratio of fluxes e +/(e + + e ?), can be associated with variations of solar activity (and, as a consequence, of acceleration regimes) on different phases of the 11-years solar cycle. The results of numerical simulation of capture and acceleration of charged particles by packets of plasma waves in the heliospheric magnetic field are presented.  相似文献   
8.
Currently light emitting diodes (LEDs) are considered to be most preferable source for space plant growth facilities. We performed a complex study of growth and photosynthesis in Chinese cabbage plants (Brassica chinensis L.) grown with continuous LED lighting based on red (650 nm) and blue (470 nm) LEDs with a red to blue photon ratio of 7:1. Plants grown with high-pressure sodium (HPS) lamps were used as a control. PPF levels used were about 100 μmol/(m2 s) (PPF 100) and nearly 400 μmol/(m2 s) (PPF 400). One group of plants was grown with PPF 100 and transferred to PPF 400 at the age of 12 days. Plants were studied at the age of 15 and 28 days (harvest age); some plants were left to naturally end their life cycle. We studied a number of parameters reflecting different stages of photosynthesis: photosynthetic pigment content; chlorophyll fluorescence parameters (photosystem II quantum yield, photochemical and non-photochemical chlorophyll fluorescence quenching); electron transport rate, proton gradient on thylakoid membranes (ΔpH), and photophosphorylation rate in isolated chloroplasts. We also tested parameters reflecting plant growth and productivity: shoot and root fresh and dry weight, sugar content and ascorbic acid content in shoots. Our results had shown that at PPF 100, plants grown with LEDs did not differ from control plants in shoot fresh weight, but showed substantial differences in photophosphorylation rate and sugar content. Differences observed in plants grown with PPF 100 become more pronounced in plants grown with PPF 400. Most parameters characterizing the plant photosynthetic performance, such as photosynthetic pigment content, electron transport rate, and ΔpH did not react strongly to light spectrum. Photophosphorylation rate differed strongly in plants grown with different spectrum and PPF level, but did not always reflect final plant yield. Results of the present work suggest that narrow-band LED lighting caused changes in Chinese cabbage plants on levels of the photosynthetic apparatus and the whole plant, concerning its development and adaptation to a varying PPF level.  相似文献   
9.
10.
Changes in trabecular bone composition during development of osteoporosis are used as a model for bone loss in microgravity conditions during a space flight. Symbolic dynamics and measures of complexity are proposed and applied to assess quantitatively the structural composition of bone tissue from 3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify the structural loss of the bone tissue and may help to diagnose and to monitor changes in bone structure of patients on Earth as well as of the space-flying personnel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号