首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  国内免费   1篇
航空   12篇
航天技术   13篇
航天   15篇
  2022年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2007年   4篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1967年   1篇
排序方式: 共有40条查询结果,搜索用时 171 毫秒
1.
Experiments under varied gravitational accelerations as well as in density-adjusted media showed that sensation of gravity in protists may be linked to the known principles of mechanosensation. Paramecium, a ciliate with clear graviresponses (gravitaxis and gravikinesis) is an ideal model system to prove this hypothesis since the ciliary activity and thus the swimming behaviour is controlled by the membrane potential. It has also been assumed that the cytoplasmic mass causes a distinct stimulation of the bipolarly distributed mechano-sensitive K+ and Ca2+ ion channels in the plasma membrane in dependence of the spatial orientation of the cell. In order to prove this hypothesis, different channel blockers are currently under investigation. Gadolinium did not inhibit gravitaxis in Paramecium, showing that it does not specifically block gravireceptors. Further studies concentrated on the question of whether second messengers are involved in the gravity signal transduction chain. Exposure to 5 g for up to 10 min led to a significant increase in cAMP.  相似文献   
2.
Many (if not all) free-living cells use the gravity vector for their spatial orientation (gravitaxis). Additional responses may include gravikinesis as well as changes in morphological and physiological parameters. Though using essentially different modes of locomotion, ameboid and ciliated cells seem to rely on common fundamental graviperception mechanisms. Uniquely in the ciliate family Loxodidae a specialized intracellular gravireceptor organelle has been developed, whereas in all other cells common cell structures seem to be responsible for gravisensing. Changes in direction or magnitude of acceleration (from 0 to 5 g) as well as experiments in density-adjusted media strongly indicate that either the whole cytoplasm or dense organelles like nuclei act as statoliths and open directly or via cytoskeletal elements mechano-sensitive ion channels in the cell membrane. A recent spaceflight experiment (S/MM-06) demonstrated that prolonged (9 d) actual weightlessness did not affect the ability of Loxodes to respond to acceleration stimuli. However, prolonged cooling (> or = l4 d, 4-10 degrees C) destroyed the ability for gravitactic orientation of Paramecium. This may reflect a profound effect either on the gravireceptor itself or on the gravity-signal processing. In gravity signalling the ubiquitous second messenger cAMP may be involved in acceleration-stimulus transduction.  相似文献   
3.
Recently a gravisensitivity of the acellular slime mold Physarum polycephalum, which possesses no specialized gravireceptor, could be established by conducting experiments under simulated and under real near weightlessness. In these experiments macroplasmodia showed a modulation of their contraction rhythm followed by regulation phenomena. Until now the perception mechanism for the gravistimulus is unknown, but several findings indicate the involvement of mitochondria: A) During the impediment of respiration the 0g-reaction is inhibited and the regulation is reduced. B) The response to a light stimulus and the following regulation phenomena strongly resemble the behavior during exposure to 0g, the only difference is that the two reactions are directed into opposite directions. In the blue-light reaction a flavin of the mitochondrial matrix seems to be involved in the light perception. C) The contraction rhythm as well as its modulations are coupled to rhythmic changes in the levels of ATP and calcium ions, involving the mitochondria as sites of energy production and of Ca(++)-storage. So the mitochondria could be the site of the regulation and they possibly are the receptor sites for the light and gravity stimuli. Also the observation of a morphologic polarity of the slime mold's plasmodial strands has to be considered: Cross-sections reveal that the ectoplasmic wall surrounding the streaming endoplasm is much thinner on the physically lower side than on the upper side of the strand--this applies to strands lying on or hanging on a horizontal surface. So, in addition to the mitochondria, also the morphologic polarity may be involved in the perception mechanism of the observed gravisensitivity and of the recently established geotaxis. The potential role of the nuclei and of the contractile elements in the perception of gravity is also discussed.  相似文献   
4.
The acellular slime mold Physarum polycephalum is used as a model system to investigate the graviresponse of single cells which possess no receptors specialized for the perception of gravity. To obtain insights into the gravity-signal transduction mechanism the light response of the cell is used: Macroplasmodia of the slime mold show clear geo- and phototaxes. Gravity increases and white light decreases transiently the contraction frequency of plasmodial strands whereby both responses follow the same time pattern. Since mitochondria play a major role in changing the contraction rhythm in response to light and gravity stimuli, the simultaneous and subsequent inductions of the opposing light and gravity responses and their mutual influences on one another were investigated. The experiments were performed in weightlessness (0 g)--simulated on the fast-rotating clinostat as well as in actual weightlessness during the IML-1 Space Shuttle mission. The results indicate that mitochondria (chondriome) are part of the acceleration-stimulus reaction chain in Physarum. Two models for a direct gravireceptor mechanism are discussed.  相似文献   
5.
We have investigated Physarum polycephalum, a unicellular organism with no special gravity receptors, on its ability to react to gravity. The first experiments were 0 g-simulation experiments on the fast-rotating clinostat conducted with plasmodial strands of this acellular slime mold. In these earth-bound experiments the observed parameters were periodicity of the contractions and dilatations of the strand's ectoplasm as well as the periodicity and velocity of the striking cytoplasmic (endoplasmic) shuttle streaming. During 0 g-simulation these parameters showed significant changes indicating the existence of a gravisensitivity of the slime mold.

The Space-Shuttle experiment (ESA-Biorack in D 1-Mission) should demonstrate the validity of the 0 g-simulation on the fast-rotating clinostat. The experiment was designed in a way enabling the registration of the same parameters as on the clinostat (using the light microscope in combination with a photo diode and a cinecamera). Only one of the two planned measurement sessions was fully successful and provided us with data confirming the results gained on the fast-rotating clinostat: The slime mold showed under real near weightlessness in the D 1-Space Shuttle Mission a transient frequency increase in its contraction rhythmicity and a (steady) increase in the streaming velocity of its endoplasm.  相似文献   

6.
Human locomotion on Mars will be considerably different from on Earth. Optimum walking speeds will be approximately 30% lower and transitioning from a walk to a run will occur at a speed 25% slower. Peak vertical forces will be reduced by as much as 50%, and although ground contact time will remain constant with locomotion in 1 g, stride length and stride time will increase. During running on Mars airborne time will increase by approximately 80% in comparison to running on the Earth. On Mars, half as much energy will be required to travel the equivalent distance on Earth and it will be 65% more economical to run rather than to walk. Crews will, therefore, find themselves using a loping gait--a running-like action, with a slight upper body lean and an extended aerial phase, an unfamiliar gait in terrestrial locomotion.  相似文献   
7.
This paper presents the topic of using solid rocket propulsion for de-orbiting spacecraft,in order to fulfil space debris mitigation requirements. The benefits and disadvantages of using such means are discussed. A dedicated system can be implemented in the satellite design phase and shall be a key subsystem of platforms inserted into orbit. Uncontrolled, semi-controlled and controlled de-orbit can be completed using solid rocket motors. Their impact on the space debris environment is discussed....  相似文献   
8.
In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system.  相似文献   
9.
Doughty CE  Wolf A 《Astrobiology》2010,10(9):869-879
Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.  相似文献   
10.
The magnetosphere is explored in situ by satellites, but measurements near the low altitude magnetospheric boundary by rockets, balloons and groundbased instruments play a very significant role. The geomagnetic field provides a frame with anisotropic wave and particle propagation effects, enabling remote sensing of the distant magnetosphere by means of balloon-borne and groundbased instruments. Examples will be given of successful studies, with coordinated satellite and balloon observations, of substorm, pulsation and other phenomena propagating both along and across the geomagnetic field. Continued efforts with sophisticated balloon-borne instrumentations should contribute substantially to our understanding of magnetospheric physics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号