首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航空   1篇
航天技术   10篇
航天   1篇
  2021年   2篇
  2012年   1篇
  2010年   1篇
  2008年   4篇
  2004年   1篇
  1999年   1篇
  1978年   2篇
排序方式: 共有12条查询结果,搜索用时 296 毫秒
1.
By the term "m-distributed optical signal" we mean a noise-like optical signal whose envelope (or intensity) fluctuation probability is modeled by Nakagami's "m-distribution." Using the m-distribution which has been widely used as an analytical model of the fading envelope in radio communications, it is shown that one can generally analyze the statistical properties such as the photoelectron count probabilities and error probabilities for the wider class of noise-like optical signals; some numerical results are also given.  相似文献   
2.
Direct initiation of detonations in gaseous mixtures of C2H2-O2, H2-O2 and H2-Cl2 in the pressure range of 10–150 torr using flash photolysis was studied. Similar to blast initiation using a concentrated powerful energy source, it was found that for photochemical initiation, there exists a certain threshold of flash intensity and energy for each mixture at any given initial pressure and composition below which a deflagration is formed. At the critical threshold, however, a fully developed detonation is rapidly formed in the immediate vicinity of the window of incident UV radiation. However, at super critical flash energies, the amplitude of the detonation formed decreases and combustion of the entire irradiated volume approaches a constant volume explosion. It was found that photo-chemical initiation requires both a certain minimum peak value of the free radical concentration generated by the photo-dissociation as well as an appropriate gradient of this free radical distribution. The minimum peak radical concentration permits rapid reaction rates for the generation of strong pressure waves, while the gradient is necessary for the amplification of the shock waves to a detonation. If the gradient is absent and the free radicals are uniformly distributed in the mixture, then the entire volume simply explodes as in a constant volume process. The present study reveals that the mechanism of photochemical initiation is one of proper temporal synchronization of the chemical energy release to the shock wave as it propagates through the mixture. In analogy to the LASER, the term SWACER is introduced to represent this mechanism of Shock Wave Amplication by Coherent Energy Release. There are strong indications that this SWACER mechanism is universal and plays the main role in the formation of detonations whenever a powerful concentrated external source is not used to generate a strong shock wave in the explosive.  相似文献   
3.
4.
We observed sodium emission from Mercury’s atmosphere using a Fabry–Perot Interferometer at Haleakala Observatory on June 14, 2006. The Fabry–Perot Interferometer was used as a wavelength-tunable filter. The spectra of the surface reflection were subtracted from the observed spectra because sodium emission is contaminated by the surface reflection of Mercury. The image obtained in our observation shows the sodium exosphere extended to the anti-solar direction. The lifetime of a sodium atom was estimated to be 1.6 × 104 to 1.9 × 105 s with an error by a factor of 3–4.  相似文献   
5.
MAGDAS PEN was established on 19th September 2019 as one of the MAGDAS observatory arrays located at Universiti Sains Malaysia (USM) (5.15°, 100.50°). The main objective of the MAGDAS project is to monitor global electromagnetic and the ambient plasma density in the geospace environment. This installation has contributed to a better understanding of the Sun-Earth coupling system. This paper presents the installation process of one of the MAGDAS magnetometers named YU-8 T magnetic sensor and provides a preliminary analysis of geomagnetic HDZ components amplitude-time that was observed at PEN station. A one-month HDZ-geomagnetic field data was processed from 1st November to 30th November 2019. The daily variations with a consistent pattern in delta H geomagnetic field components are observed throughout the day with eastward electric field effects that are observed during solar peak hours. The delta H-component gradually increases around 0700LT and reaches the maximum reading at 1300LT with a range of value ~ 40-70nT. The value slowly decreases that started from 1400LT until the night time. The reading during the night time shows a constant variation with magnitude varies in between ?10nT to + 10nT. The average H-component value of the night time is used as the baseline for the observation system. Overall, the observed trends portray a good sign of solar quiet field and Sq with no solar-terrestrial disturbances.  相似文献   
6.
Radiative and dynamical impacts of Arctic and Antarctic ozone holes on the general circulation are investigated with the aid of a general circulation model developed at Kyushu University. The model includes a simplified ozone photochemistry interactively coupled with radiation and dynamics. Resultant temperature structure consisting of a cooling in the polar lower stratosphere and a warming in the polar upper stratosphere brings about the intensification of the polar night jet. The cooling is caused by the decrease of solar ultraviolet heating due to the ozone depletion, while the warming is caused by adiabatic heating due to the enhancement of downward motion.  相似文献   
7.
The Mercury’s Sodium Atmosphere Spectral Imager (MSASI) on BepiColombo (BC) will address a range of fundamental scientific questions pertaining to Mercury’s exosphere. The measurements will provide new information on regolith–exosphere–magnetosphere coupling as well as new understanding of the dynamics governing the exosphere bounded by the planetary surface, the solar wind and interplanetary space. MSASI is a high-dispersion visible spectrometer working in the spectral range around sodium D2 emission (589 nm). A tandem Fabry–Perot etalon is used to achieve a compact design. We presents a design of the spectral analyzer using Fabry–Perot interferometer. We conclude that: (1) The MSASI optical design is practical and can be implemented without new or critical technology developments; (2) The thermally-tuned etalon design is based on concepts, designs and materials that have good space heritage.  相似文献   
8.
An ultraviolet spectrometer, PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) that is loaded onto the Mercury Planetary Orbiter in the BepiColombo mission is under development. The instrument, basically consisting of two spectrophotometers (EUV: 50–150 nm, FUV: 145–330 nm) and one scanning mirror, aims at measuring emission lines from molecules, atoms and ions present in the tenuous atmosphere of Mercury. The detectors employ microchannel plates as 2-D photon-counting devices. In order to enhance the quantum detection efficiencies, the surface of the top microchannel plates of EUV detector is covered with photocathode. This method enables us to identify weak atmospheric signatures such as neon (73.5 nm) and argon (104.8 nm), which could not be detected with conventional detector systems. This paper presents measurements of the performance characteristics of potassium bromide and esium iodide photocathodes, which have been evaluated for use in the EUV channel.  相似文献   
9.
BepiColombo, a mission of ESA (European Space Agency) in cooperation with JAXA (Japan Aerospace Exploration Agency), will explore Mercury, the planet closest to the Sun. BepiColombo will launch in 2014 on a journey lasting up to six and a half years; the data gathering phase should occupy a one year nominal mission, with a possible extension of another year. The data which will be brought back from the orbiters will tell us about the Hermean surface, atmospheric composition, and magnetospheric dynamics; it will also contribute to understanding the history and formation of terrestrial planets. The PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) instrument will be flown on MPO: Mercury Planetary Orbiter, one of the two BepiColombo orbiters. The main purpose of the instrument is to reveal the composition and the distribution of the exosphere of Mercury through EUV (Extreme Ultraviolet: 55–155 nm) and FUV (Far Ultraviolet: 145–315 nm) measurements. A consortium composed of four main countries has been formed to build it. Japan provides the two detectors (EUV and FUV), Russia implements the scanning system, and France and Italy take charge of the overall design, assembly, test, integration, and also provide two small NUV (Near Ultraviolet) detectors (for the light from calcium and potassium molecules). An optical prototype of the EUV detector which is identical to the flight configuration has been manufactured and evaluated. In this paper, we show the first spectra results observed by the EUV channel optical prototype. We also describe the design of PHEBUS and discuss the possibility of detecting noble gases in Mercury’s exosphere taking the experimental results so far into account.  相似文献   
10.
The Mercury’s Sodium Atmosphere Spectral Imager (MSASI) on BepiColombo will address fundamental scientific questions pertaining to the Mercury’s sodium exosphere. Together, our measurements on the overall scale will provide ample new information on regolith–exosphere–magnetosphere coupling as well as new understanding of the dynamics governing the surface-bounded exosphere. We will compare the four different source mechanisms in preparation for modeling MSASI data and show the feasibility of identifying a process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号