首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
航空   9篇
  2010年   2篇
  2004年   1篇
  2001年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有9条查询结果,搜索用时 281 毫秒
1
1.
2.
We review the implications of modern higher-dimensional theories of gravity for astrophysics and cosmology. In particular, we discuss the latest developments of STM theory in connection with dark matter, particle dynamics and the cosmological constant, as well as related aspects of quantum theory. There are also more immediate tests of extra dimensions, notably involving perturbations of the cosmic 3K microwave background and the precession of a supercooled gyroscope in Earth orbit. We also outline some general features of embeddings, and include pictures of the big bang as viewed from a higher dimension.  相似文献   
3.
A non-technical discussion is given of the energy density E of the extra-galactic background light. The fact that E is small means that the space between galaxies is dark, which is a modern version of a classical problem in astronomy known as Olbers' paradox. It is seen that the order of magnitude of E is fixed by the order of magnitude of the lifetime of the galaxies, as pointed out by Harrison; but that the expansion of the Universe can affect E by a smaller factor, typically about 2. These comments should help to end persistent confusion about the effects of the lifetime of the galaxies and the expansion of the Universe on the darkness of the night sky. It is hoped that Olbers' so-called paradox can now rest in peace.  相似文献   
4.
Astronomically, there are viable mechanisms for distributing organic material throughout the Milky Way. Biologically, the destructive effects of ultraviolet light and cosmic rays means that the majority of organisms arrive broken and dead on a new world. The likelihood of conventional forms of panspermia must therefore be considered low. However, the information content of damaged biological molecules might serve to seed new life (necropanspermia).  相似文献   
5.
Cosmology as it is usually studied suffers from the problem that no criterion is known which isolates from the large class of models allowed by the equations of physics those few which are realized in Nature. To provide such a criterion, it is proposed that cosmology should be based on the study of models which are free of arbitrary scales or units, this condition being compatible with (but not identical with) the Cosmological Principle. Formally, the basis for scale-free cosmology can be expressed in a dimensional Conspiracy Hypothesis: The material parameters of a system (mass, density, pressure etc.), the constants of physics and the coordinates have realizable physical meanings only when they occur together in dimensionless combinations (-numbers) in which the components may vary with time or place but in such a manner that the variations conspire to keep the -numbers constant. The Conspiracy Hypothesis (CH) streamlines cosmology, simplifying it to the finding of a few dimensionless numbers. Applied to Einstein's general relativity, the CH yields a simple cosmological model consisting of static clusters of galaxies with inverse-square density profiles embedded in an expanding, homogeneous background. This model agrees well with the observed Universe insofar as the latter can be described by general relativity. The CH can also be applied to other theories of gravity, especially those in which the gravitational parameter G is variable, and can also in itself be taken as a basis for gravitational theory.  相似文献   
6.
We ask about the nature and origin of the fundamental constants of astrophysics and particle physics, notably the speed of light c, the gravitational constant G, Planck's constant h, and the magnitude of the electron charge e. We consider general relativity and the theories of the electromagnetic, weak and strong interactions that make up the Standard Model; together with the Lagrangians of Einstein, Maxwell, Schrödinger, Klein-Gordon, Dirac, Proca, and Yang-Mills. Then we look in a more qualitative way at how the equations of physics are set up, their dimensional content, and the removal of constants from them by a suitable choice of units. We conclude with Hoyle and Narlikar, Jeffreys and McCrea that parameters like c, G, and h are merely manmade dimensional conversion constants. They arise because of our subjective view that mass, length, and time are different concepts. These constants can be removed in a manner analogous to the removal of the permittivity of free space 0 from electrodynamics, and none are really fundamental. The charge e is different, being the low-energy limit of a function related to properties of the vacuum, but because of this it is not a fundamental constant either. We suggest there are no constants which truly deserve to be called fundamental, and that an aim of physics ought to be to write down laws in which no constants appear.  相似文献   
7.
There is given a list and discussion of what are arguably the top 20 unsolved problems in astrophysics today. The list ranges from particle physics to cosmology. Possible resolutions are noted, but without judgement. Perhaps the most remarkable aspect of the discussed problems is that they are closely interrelated. This opens the prospect that a solution to one or a few may lead to a significantly better understanding of modern astrophysics.  相似文献   
8.
A discussion is given of the role of dimensional fundamental constants in gravitational and particle physics. It is concluded that such constants can most usefully be interpreted as representing asymptotic states. This interpretation is in agreement with the widespread use of dimensional analysis in astronomy, and implies that angular momentum can be expected to vary like the mass squared in the astronomical limit of large masses.  相似文献   
9.
The present state of knowledge as regards interstellar dust is reviewed in Section 1 (Introduction); Section 2 (Composition of Dust Grains: graphite, silicate, dirty-ice, diamond); Section 3 (Size of Grains: mainly r 10–6 cm); Section 4 (Charge and Temperature of Grains: charge varies from 1–10 electrons (H i clouds) to 500 electrons (H ii clouds); temperature of grain material is about 10–20 K); Section 5 (Distribution and Origin of Grains: confined mainly to discs and arms of spiral galaxies, having had a passive origin by efflux from late-type stars or carbon-stars); Section 6 (Cosmogonical and Cosmological Aspects of Interstellar Grains: accretion by electrical-image forces of one dust grain onto a similarly-charged grain links up the absence of dust and gas in elliptical galaxies with the absence of a magnetic field of the type found in spirals. The origin of the 3 K background radiation field could be produced by a population of rotating silicate grains of r 10–7 cm); Section 7 (Conclusion).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号