首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
航空   8篇
航天技术   1篇
航天   1篇
  2017年   1篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
  1997年   1篇
  1995年   1篇
  1987年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
2.
This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.  相似文献   
3.
The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation will determine the mass composition and number densities of neutral species and low-energy ions in key regions of the Saturn system. The primary focus of the INMS investigation is on the composition and structure of Titan’s upper atmosphere and its interaction with Saturn’s magnetospheric plasma. Of particular interest is the high-altitude region, between 900 and 1000 km, where the methane and nitrogen photochemistry is initiated that leads to the creation of complex hydrocarbons and nitriles that may eventually precipitate onto the moon’s surface to form hydrocarbon–nitrile lakes or oceans. The investigation is also focused on the neutral and plasma environments of Saturn’s ring system and icy moons and on the identification of positive ions and neutral species in Saturn’s inner magnetosphere. Measurement of material sputtered from the satellites and the rings by magnetospheric charged particle and micrometeorite bombardment is expected to provide information about the formation of the giant neutral cloud of water molecules and water products that surrounds Saturn out to a distance of ∼12 planetary radii and about the genesis and evolution of the rings.The INMS instrument consists of a closed ion source and an open ion source, various focusing lenses, an electrostatic quadrupole switching lens, a radio frequency quadrupole mass analyzer, two secondary electron multiplier detectors, and the associated supporting electronics and power supply systems. The INMS will be operated in three different modes: a closed source neutral mode, for the measurement of non-reactive neutrals such as N2 and CH4; an open source neutral mode, for reactive neutrals such as atomic nitrogen; and an open source ion mode, for positive ions with energies less than 100 eV. Instrument sensitivity is greatest in the first mode, because the ram pressure of the inflowing gas can be used to enhance the density of the sampled non-reactive neutrals in the closed source antechamber. In this mode, neutral species with concentrations on the order of ≥104 cm−3 will be detected (compared with ≥105 cm−3 in the open source neutral mode). For ions the detection threshold is on the order of 10−2 cm−3 at Titan relative velocity (6 km sec−1). The INMS instrument has a mass range of 1–99 Daltons and a mass resolutionMM of 100 at 10% of the mass peak height, which will allow detection of heavier hydrocarbon species and of possible cyclic hydrocarbons such as C6H6.The INMS instrument was built by a team of engineers and scientists working at NASA’s Goddard Space Flight Center (Planetary Atmospheres Laboratory) and the University of Michigan (Space Physics Research Laboratory). INMS development and fabrication were directed by Dr. Hasso B. Niemann (Goddard Space Flight Center). The instrument is operated by a Science Team, which is also responsible for data analysis and distribution. The INMS Science Team is led by Dr. J. Hunter Waite, Jr. (University of Michigan).This revised version was published online in July 2005 with a corrected cover date.  相似文献   
4.
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) will answer important questions posed by the mission’s main objectives. After Giotto, this will be the first time the volatile part of a comet will be analyzed in situ. This is a very important investigation, as comets, in contrast to meteorites, have maintained most of the volatiles of the solar nebula. To accomplish the very demanding objectives through all the different phases of the comet’s activity, ROSINA has unprecedented capabilities including very wide mass range (1 to >300 amu), very high mass resolution (mm > 3000, i.e. the ability to resolve CO from N2 and 13C from 12CH), very wide dynamic range and high sensitivity, as well as the ability to determine cometary gas velocities, and temperature. ROSINA consists of two mass spectrometers for neutrals and primary ions with complementary capabilities and a pressure sensor. To ensure that absolute gas densities can be determined, each mass spectrometer carries a reservoir of a calibrated gas mixture allowing in-flight calibration. Furthermore, identical flight-spares of all three sensors will serve for detailed analysis of all relevant parameters, in particular the sensitivities for complex organic molecules and their fragmentation patterns in our electron bombardment ion sources.  相似文献   
5.
Blanc  M.  Bolton  S.  Bradley  J.  Burton  M.  Cravens  T.E.  Dandouras  I.  Dougherty  M.K.  Festou  M.C.  Feynman  J.  Johnson  R.E.  Gombosi  T.G.  Kurth  W.S.  Liewer  P.C.  Mauk  B.H.  Maurice  S.  Mitchell  D.  Neubauer  F.M.  Richardson  J.D.  Shemansky  D.E.  Sittler  E.C.  Tsurutani  B.T.  Zarka  Ph.  Esposito  L.W.  Grün  E.  Gurnett  D.A.  Kliore  A.J.  Krimigis  S.M.  Southwood  D.  Waite  J.H.  Young  D.T. 《Space Science Reviews》2002,104(1-4):253-346
Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn's ‘intrinsic’ magnetosphere, the magnetic cavity Saturn's planetary magnetic field creates inside the solar wind flow. These two objects will be explored using the most advanced and diverse package of instruments for the analysis of plasmas, energetic particles and fields ever flown to a planet. These instruments will make it possible to address and solve a series of key scientific questions concerning the interaction of these two magnetospheres with their environment. The flow of magnetospheric plasma around the obstacle, caused by Titan's atmosphere/ionosphere, produces an elongated cavity and wake, which we call an ‘induced magnetosphere’. The Mach number characteristics of this interaction make it unique in the solar system. We first describe Titan's ionosphere, which is the obstacle to the external plasma flow. We then study Titan's induced magnetosphere, its structure, dynamics and variability, and discuss the possible existence of a small intrinsic magnetic field of Titan. Saturn's magnetosphere, which is dynamically and chemically coupled to all other components of Saturn's environment in addition to Titan, is then described. We start with a summary of the morphology of magnetospheric plasma and fields. Then we discuss what we know of the magnetospheric interactions in each region. Beginning with the innermost regions and moving outwards, we first describe the region of the main rings and their connection to the low-latitude ionosphere. Next the icy satellites, which develop specific magnetospheric interactions, are imbedded in a relatively dense neutral gas cloud which also overlaps the spatial extent of the diffuse E ring. This region constitutes a very interesting case of direct and mutual coupling between dust, neutral gas and plasma populations. Beyond about twelve Saturn radii is the outer magnetosphere, where the dynamics is dominated by its coupling with the solar wind and a large hydrogen torus. It is a region of intense coupling between the magnetosphere and Saturn's upper atmosphere, and the source of Saturn's auroral emissions, including the kilometric radiation. For each of these regions we identify the key scientific questions and propose an investigation strategy to address them. Finally, we show how the unique characteristics of the CASSINI spacecraft, instruments and mission profile make it possible to address, and hopefully solve, many of these questions. While the CASSINI orbital tour gives access to most, if not all, of the regions that need to be explored, the unique capabilities of the MAPS instrument suite make it possible to define an efficient strategy in which in situ measurements and remote sensing observations complement each other. Saturn's magnetosphere will be extensively studied from the microphysical to the global scale over the four years of the mission. All phases present in this unique environment — extended solid surfaces, dust and gas clouds, plasma and energetic particles — are coupled in an intricate way, very much as they are in planetary formation environments. This is one of the most interesting aspects of Magnetospheric and Plasma Science studies at Saturn. It provides us with a unique opportunity to conduct an in situ investigation of a dynamical system that is in some ways analogous to the dusty plasma environments in which planetary systems form. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased.  相似文献   
7.
The Plasma Experiment for Planetary Exploration (PEPE) flown on Deep Space 1 combines an ion mass spectrometer and an electron spectrometer in a single, low-resource instrument. Among its novel features PEPE incorporates an electrostatically swept field-of-view and a linear electric field time-of-flight mass spectrometer. A significant amount of effort went into developing six novel technologies that helped reduce instrument mass to 5.5 kg and average power to 9.6 W. PEPE’s performance was demonstrated successfully by extensive measurements made in the solar wind and during the DS1 encounter with Comet 19P/Borrelly in September 2001. P. Barker is deceased.  相似文献   
8.
9.
The determination of the composition of materials that make up comets is essential in trying to understand the origin of these primitive objects. The ices especially could be made in several different astrophysical settings including the solar nebula, protosatellite nebulae of the giant planets, and giant molecular clouds that predate the formation of the solar system. Each of these environments makes different ices with different composition. In order to understand the origin of comets, one needs to determine the composition of each of the ice phases. For example, it is of interest to know that comets contain carbon monoxide, CO, but it is much more important to know how much of it is a pure solid phase, is trapped in clathrate hydrates, or is adsorbed on amorphous water ice. In addition, knowledge of the isotopic composition of the constituents will help determine the process that formed the compounds. Finally, it is important to understand the bulk elemental composition of the nucleus. When these data are compared with solar abundances, they put strong constraints on the macro-scale processes that formed the comet. A differential scanning calorimeter (DSC) and an evolved gas analyzer (EGA) will make the necessary association between molecular constituents and their host phases. This combination of instruments takes a small (tens of mg) sample of the comet and slowly heats it in a sealed oven. As the temperature is raised, the DSC precisely measures the heat required, and delivers the gases to the EGA. Changes in the heat required to raise the temperature at a controlled rate are used to identify phase transitions, e.g., crystallization of amorphous ice or melting of hexagonal ice, and the EGA correlates the gases released with the phase transition. The EGA consists of two mass spectrometers run in tandem. The first mass spectrometer is a magnetic-sector ion-momentum analyzer (MAG), and the second is an electrostatic time-of-flight analyzer (TOF). The TOF acts as a detector for the MAG and serves to resolve ambiguities between fragments of similar mass such as CO and N2. Because most of the compounds of interest for the volatile ices are simple, a gas chromatograph is not needed and thus more integration time is available to determine isotopic ratios. A gamma-ray spectrometer (GRS) will determine the elemental abundances of the bulk cometary material by determining the flux of gamma rays produced from the interaction of the cometary material with cosmic ray produced neutrons. Because the gamma rays can penetrate a distance of several tens of centimeters a large volume of material is analyzed. The measured composition is, therefore, much more likely to be representative of the bulk comet than a very small sample that might have lost some of its volatiles. Making these measurements on a lander offers substantial advantages over trying to address similar objectives from an orbiter. For example, an orbiter instrument can determine the presence and isotopic composition of CO in the cometary coma, but only a lander can determine the phase(s) in which the CO is located and separately determine the isotopic composition of each reservoir of CO. The bulk composition of the nucleus might be constrained from separate orbiter analyses of dust and gas in the coma, but the result will be very model dependent, as the ratio of gas to dust in the comet will vary and will not necessarily be equal to the bulk value.  相似文献   
10.
The ionospheres of the major planets Jupiter, Saturn, and Uranus are reviewed in light of Pioneer and Voyager observations. Some refinements to pre-Voyager theoretical models are required to explain the results, most notably the addition of significant particle ionization from ‛electroglow” and auroral processes and the need for additional chemical loss of protons via charge exchange reactions with water. Water from the Saturn rings has been identified as a major modifier of the Saturn ionosphere and water influx from satellites and/or meteorites may also be important at Jupiter and Uranus as well, as evidenced by the observed ionospheric structure and the identification of cold stratospheric carbon monoxide at Jupiter.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号