首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   3篇
航天技术   2篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
  1977年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
We review the results obtained in the frequency range of Pc3 (22-100 mHz) and Pc4 (7-22 mHz) pulsations at Italian Antarctic stations in the southern polar cap (“Mario Zucchelli”, at Terra Nova Bay, TNB, 80˚.S; “Concordia”, the Italian/French base at Dome C, DMC, 89˚.S). The absence of a midnight enhancement in the pulsation power suggests a negligible substorm influence at extreme latitudes, while the sharp noon enhancement, which appears only at TNB, is determined by the closer proximity of the station to cusp related phenomena. The relationship between the frequency of the band-limited signals and the interplanetary magnetic field strength, the cone angle influence, and the higher correlation of the Pc3 power with the solar wind speed in the morning hours suggest a global scenario in which upstream waves would be mainly responsible for the mid-frequency activity in the polar cap. However, the polarization pattern is odd with respect to the predictions for tailward propagating modes.  相似文献   
2.
A multi-station analysis of geomagnetic field measurements conducted for a remarkable case event, at a European and an American array shows that, although several aspects of the geomagnetic field observations show a clear latitudinal and local time dependence, simultaneous oscillations at discrete frequencies (f ≈ 1.0, 1.3, 2.2 and 3.2 mHz) are almost ubiquitously detected, from low to high latitudes both in the light and dark sector. They are driven by fluctuations of the solar wind density and dynamic pressure at the same frequencies, via the modulation of the magnetopause current. We also report clear evidence for the occurrence of resonant coupling (at f ≈ 2.2 and 3.2 mHz) between such modes and high latitude field lines. Due to the variable length of the field line through the day, oscillation modes at the same frequencies resonate at different latitudes in the daytime and nighttime region, respectively.  相似文献   
3.
Pioneer 7 and Pioneer 8 spacecraft provided the only direct observations of the geomagnetic tail at geocentric distances as large as 1000R e and 500R e respectively. The presence of a low density plasma flow in the region of expected tail and the intermittent and short duration character of the tail encounters suggested in the past a distant tail structure remarkably different from its near-earth and cislunar shape. However the recent discovery of the plasma mantle allows to interpret the Pioneer observations in terms of a distant tail that possibly is still preserving most of its near-earth characteristics. In particular, the region of tail encounters and the magnitude and direction of the observed magnetic field might be consistent with a cylindrical tail with a modestly increased cross-section. Neutral sheet observations also appear to be consistent with the most recent bidimensional tail models. Finally, as in the cislunar region, the double peaked proton energy spectra can be interpreted in terms of a partial intermingling of plasma sheet and plasma mantle populations.Also at Laboratorio Plasma nello Spazio, CNR, Frascati.  相似文献   
4.
Villante  U.  Francia  P.  Vellante  M.  Giuseppe  P. Di 《Space Science Reviews》2003,107(1-2):207-217
We review some aspects of low latitudes (L≤2) geomagnetic field variations associated with magnetospheric pulsations as well as with continuous and impulsive variations of the solar wind (SW) pressure. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
The polarization pattern of ULF pulsations (f ≈ 1–100 mHz) at Terra Nova Bay (Antarctica, CGM λ ∼ 80°) has been determined for the entire 2003, soon after the solar maximum. A comparison with the results of previous investigations, conducted at the same station close to the solar minimum (1994–96), allows to focus common elements and major differences among different frequency bands which persist through the entire solar cycle. Basically, between f ∼ 1.5 and 5 mHz, the day can be divided into four sectors with alternate polarizations. The local time and latitudinal dependence of the observed pattern can be tentatively interpreted in terms of a latitude of resonant field lines reaching λ ∼ 80° in the noon sector; on the other hand, resonance effects of lower latitude field lines can be clearly identified also far from the noon meridian when the station moves into the deep polar cap. Moreover, in the morning sector the resonance region would extend to lower latitudes than in the evening sector. The proposed profile of the resonant region can interpret also the results obtained at other cusp/auroral stations and appears consistent with that one inferred in the northern hemisphere at smaller latitudes. The resonance region progressively shifts toward lower latitude with increasing frequency; correspondingly, the four-sector pattern progressively disappears at TNB. Above f ∼ 20 mHz, the experimental observations might suggest an additional contribution from Sunward propagating waves, possibly via the magnetotail lobes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号