首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   2篇
航天技术   1篇
  2004年   3篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We examine the magnetic field in the martian magnetosheath due to solar wind draping. Mars Global Surveyor provided 3-D vector magnetic field measurements at a large range of altitudes, local times, and solar zenith angles as the spacecraft orbit evolved. We choose orbits with very clean signatures of draping to establish the nominal morphology of the magnetic field lines at local times of near-subsolar and near-terminator. Next, using a compilation of data from Mars Global Surveyor, we determine the average magnetic field morphology in the martian magnetosheath due to the solar wind interaction. The topology of the field is as expected from previous observations and predictions. The magnetic field magnitude peaks at low altitude and noon magnetic local time and decreases away from that point. The magnetic field has an inclination from the local horizontal of 5.6° on average in the dayside magnetosheath and 12.5° on the nightside. The inclination angle is closest to zero at noon magnetic local time and low altitude. It increases both upward and to later local times. The magnetic field in the induced magnetotail flares out from the Mars—Sun direction by 21°. Finally, we compare the observations to gasdynamic model predictions and find that the shocked solar wind flow in the martian magnetosheath can be treated as a gasdynamic flow with the magnetic pileup boundary as the inner boundary to the flow.  相似文献   
2.
The origin of the anisotropy in the shape of the Martian obstacle and bow shock is analyzed using Mars Global Surveyor observations. The influence of MHD or ion pick-up effects on Martian obstacle position was to be small found, however, localized Martian crustal magnetization increases the thickness of the downstream planetary magnetotail by 500–1000 km in agreement with earlier Phobos 2 observations. A new analytical model is presented for Martian obstacle shape variation for different solar wind ram pressure. Elongation of the Martian BS cross-section in the direction perpendicular to IMF was confirmed while the shift of this cross section in the +Y direction of Martian interplanetary medium reference frame was discovered. The shift of BS cross section in the direction of interplanetary electric field was not revealed thus not conforming the idea that mass-loading play some role in BS control.  相似文献   
3.
Vignes  D.  Acuña  M.H.  Connerney  J.E.P.  Crider  D.H.  Rème  H.  Mazelle  C. 《Space Science Reviews》2004,111(1-2):223-231
We report observations of magnetic fields amplitude, which consist of a series of individual spikes in the Martian atmosphere. A minimum variance analysis shows that these spikes form twisted cylindrical filaments. These small diameter magnetic filaments are commonly called magnetic flux ropes. We examine the global characteristics of magnetic flux ropes, which are observed on 5% of the elliptical orbits of Mars Global Surveyor. Flux ropes are more often observed in Venus' atmosphere (70% of the orbits). In this paper we report some of the global characteristics of the flux ropes identified in the Martian atmosphere. No flux ropes are observed in the southern hemisphere of Mars. Most of them occur at high solar zenith angles, close to the terminator plane, and at high latitude with altitudes below 400 km. The orientation of the flux ropes appears random while in the case of Venus the orientation is more horizontal near the terminator for altitudes greater than 200 km. We have identified fewer flux ropes for SZA between 40 to 60 deg and for SZA lower than 20 deg, like in the case of Venus (Elphic and Russell, 1983b). Statistically, Mars' ionosphere with SZA range between 40circ to 60circ is less magnetized than near the subsolar point. As the Martian ionosphere is quite often magnetized by the magnetic components of the crustal field, this crustal magnetic field seems to inhibit the flux ropes formation in the southern hemisphere. However, some orbits without crustal magnetic field, called magnetic cavities, were observed without flux ropes. So the flux ropes formation process seems to be uppressed by another factor, like the solar wind dynamic pressure for Venus (Krymskii and Breus, 1988).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号