首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   3篇
航天技术   1篇
  2009年   1篇
  2000年   1篇
  1999年   1篇
  1984年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.  相似文献   
2.
We analyze SUMER spectra of 14 lines belonging to 12 ions, obtained on both sides of the boundary of polar coronal holes as well as at other locations along the limb. We compare line intensities, shifts and widths in coronal holes with values obtained in the quiet Sun. We find that with increasing formation temperature, spectral lines show an increasingly stronger blueshift in coronal holes relative to the quiet Sun at an equal heliospheric angle. The width of the lines is generally larger (by a few km/s) inside the coronal hole. Intensity measurements show the presence of the coronal hole in Ne VIII lines as well as in Fe XII, with evidence for a slightly enhanced emission in polar coronal holes for lines formed below 105 K. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
3.
Seeing limitations of the earth's atmosphere have prevented us from spatially resolving most of the basic magnetic flux elements on the sun, since their sizes are all well below one sec of arc (excluding sunspots). No space experiment to overcome this limitation has yet been performed, but the first step will be taken with Spacelab 2.Direct mapping of the circular polarization in spectral lines provides us with information on the morphology and evolution of the partially resolved magnetic structures. In reviewing recent results, special attention is payed to the question of flux disappearance, since it is fundamental for understanding the solar cycle, and depends on a knowledge of the fine-scale structures.The strong-field (kG) nature of the photospheric flux was revealed more than a decade ago using polarization recordings in pairs of spectral lines. A breakthrough in the use of spectral information to deduce the properties of the spatially unresolved magnetic fluxtubes has recently been achieved through the conversion of a Fourier transform spectrometer (FTS) into a polarimeter for Zeeman-effect recordings. We first use the FTS data to illustrate the diagnostic contents of the line-ratio technique, and then indicate how a statistical approach with 400 Fe I lines has recently been applied. In particular we discuss the implications of the observed Stokes V asymmetries for fluxtube dynamics.Finally the ongoing search for a small-scale “turbulent” magnetic field of mixed polarities is described. Observational limits derived from direct magnetograms, spectral line broadening, and the Hanle effect are illustrated.  相似文献   
4.
Stasiewicz  K.  Bellan  P.  Chaston  C.  Kletzing  C.  Lysak  R.  Maggs  J.  Pokhotelov  O.  Seyler  C.  Shukla  P.  Stenflo  L.  Streltsov  A.  Wahlund  J.-E. 《Space Science Reviews》2000,92(3-4):423-533
This paper presents a comprehensive review of dispersive Alfvén waves in space and laboratory plasmas. We start with linear properties of Alfvén waves and show how the inclusion of ion gyroradius, parallel electron inertia, and finite frequency effects modify the Alfvén wave properties. Detailed discussions of inertial and kinetic Alfvén waves and their polarizations as well as their relations to drift Alfvén waves are presented. Up to date observations of waves and field parameters deduced from the measurements by Freja, Fast, and other spacecraft are summarized. We also present laboratory measurements of dispersive Alfvén waves, that are of most interest to auroral physics. Electron acceleration by Alfvén waves and possible connections of dispersive Alfvén waves with ionospheric-magnetospheric resonator and global field-line resonances are also reviewed. Theoretical efforts are directed on studies of Alfvén resonance cones, generation of dispersive Alfvén waves, as well their nonlinear interactions with the background plasma and self-interaction. Such topics as the dispersive Alfvén wave ponderomotive force, density cavitation, wave modulation/filamentation, and Alfvén wave self-focusing are reviewed. The nonlinear dispersive Alfvén wave studies also include the formation of vortices and their dynamics as well as chaos in Alfvén wave turbulence. Finally, we present a rigorous evaluation of theoretical and experimental investigations and point out applications and future perspectives of auroral Alfvén wave physics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号