首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   6篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2005年   1篇
  1973年   1篇
排序方式: 共有6条查询结果,搜索用时 385 毫秒
1
1.
The Juno Magnetic Field Investigation   总被引:2,自引:0,他引:2  
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ~20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = \(1.6 \times 10^{6}\mbox{ nT}\) per axis) with a resolution of ~0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.  相似文献   
2.
All four giant planets in the solar system possess irregular satellites, characterized by large, highly eccentric and/or highly inclined orbits. These bodies were likely captured from heliocentric orbit, probably in association with planet formation itself. Enabled by the use of large-format digital imagers on ground-based telescopes, new observational work has dramatically increased the known populations of irregular satellites, with 74 discoveries in the last few years. A new perspective on the irregular satellite systems is beginning to emerge.We find that the number of irregular satellites measured to a given diameter is approximately constant from planet to planet. This is surprising, given the radically different formation scenarios envisioned for the gas giants Jupiter and Saturn compared to the (much less massive and compositionally distinct) ice giants Uranus and Neptune. We discuss the new results on the irregular satellites and show how these objects might be used to discriminate amongst models of giant planet formation.  相似文献   
3.
The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.  相似文献   
4.
IEEE Standards for Prognostics and Health Management   总被引:1,自引:0,他引:1  
Recently operators of complex systems such as aircraft, power plants, and networks have been emphasizing the need for on-line health monitoring for purposes of maximizing operational availability and safety. The discipline of prognostics and health management (PHM) is being formalized to address the information management and prediction requirements for addressing these needs. Herein, we will explore how standards currently under development within the IEEE can be used to support PHM applications. Particular emphasis will be placed on the role of PHM and PHM-related standards with Department of Defense (DOD) automatic test systems-related research.  相似文献   
5.
This paper is a report on new methods for on-line testing of single-input/single-output linear and time-invariant systems. No interruption of system operation is necessary, since the signals used in this test procedure are the normal operating signals. Test results indicate that detectable system errors using finite amounts of data are well within tolerance for normal operation in all but the most stringent applications.  相似文献   
6.
The MAVEN Magnetic Field Investigation   总被引:1,自引:0,他引:1  
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号