首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
航空   17篇
航天技术   20篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2008年   7篇
  2006年   4篇
  2005年   1篇
  2001年   3篇
  1999年   3篇
  1998年   3篇
  1995年   1篇
  1989年   2篇
排序方式: 共有37条查询结果,搜索用时 234 毫秒
1.
The modulation of galactic cosmic rays in the heliosphere seems to be dominated by four major mechanisms: convection, diffusion, drifts (gradient, curvature and current sheet), and adiabatic energy losses. In this regard the global structure of the solar wind, the heliospheric magnetic field (HMF), the current sheet (HCS), and that of the heliosphere itself play major roles. Individually, the four mechanisms are well understood, but in combination, the complexity increases significantly especially their evolvement with time - as a function of solar activity. The Ulysses observations contributed significantly during the past solar minimum modulation period to establish the relative importance of these major mechanisms, leading to renewed interest in developing more sophisticated numerical models, and in the underlying physics, e.g., what determines the diffusion tensor. With increased solar activity, the relative contributions of the mentioned mechanisms change, but how they change and what causes these changes over an 11-year solar cycle is not well understood. It can therefore be expected that present and forthcoming observations during solar maximum activity will again produce very important insights into the causes of long-term modulation. In this paper the basic theory of solar modulation is reviewed for galactic cosmic rays. The influence of the Ulysses observations on the development of the basic theory and numerical models are discussed, especially those that have challenged the theory and models. Model-based predictions are shown for what might be encountered during the next solar minimum. Lastly, modulation theory and modelling are discussed for periods of maximum solar activity when a global reorganization of the HMF, and the HCS, occurs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
Time-dependent cosmic ray modulation is calculated over multiple solar cycles using our well established two-dimensional time-dependent modulation model. Results are compared to Voyager 1, Ulysses and IMP cosmic ray observations to establish compatibility. A time-dependence in the diffusion and drift coefficients, implicitly contained in recent expressions derived by , ,  and , is incorporated into the cosmic ray modulation model. This results in calculations which are compatible with spacecraft observations on a global scale over consecutive solar cycles. This approach compares well to the successful compound approach of Ferreira and Potgieter (2004). For both these approaches the magnetic field magnitude, variance of the field and current sheet tilt angle values observed at Earth are transported time-dependently into the outer heliosphere. However, when results are compared to observations for extreme solar maximum, the computed step-like modulation is not as pronounced as observed. This indicates that some additional merging of these structures into more pronounced modulation barriers along the way is needed.  相似文献   
3.
Almost all theoretical and numerical models for the modulation of cosmic ray in the heliosphere are based on Parker's transport equation which contains all the important basic physical processes. The relative importance of the various mechanisms is however not established and may vary significantly over 22 years. The simultaneous measurements of solar wind parameters, heliospheric magnetic field properties and cosmic rays over a wide range of energies and positions in the heliosphere have brought the realization that modulation is much more complicated than what the original drift models predicted. In the process the sophistication of models based on solving Parker's equation has increased by orders of magnitude. A short review of the global modulation of cosmic rays is given from a theoretical and modelling point of view.  相似文献   
4.
A numerical model, based on Parker’s transport equation, describing the modulation of anomalous cosmic rays and containing diffusive shock acceleration is applied. The role of radial perpendicular diffusion at the solar wind termination shock, and as the dominant diffusion coefficient in the outer heliosphere, is studied, in particular the role it plays in the effectiveness of the acceleration of anomalous protons and helium when its latitude dependence is changed. It is found that the latitudinal enhancement of radial perpendicular diffusion towards the heliospheric poles and along the termination shock has a prominent effect on the acceleration of these particles. It results in a ‘break’ in the energy spectrum for anomalous protons at ∼6.0 MeV, causing the spectral index to change from E−1.38 to E−2.23, but for anomalous helium at ∼3.0 MeV, changing the spectral index from E−1.38 to E−2.30. When approaching the simulated TS, the changes in the modulated spectra as they unfold to a ‘steady’ power law shape at energies below 50 MeV are much less prominent as a function of radial distances when radial perpendicular diffusion is increased with heliolatitude.  相似文献   
5.
Observations of galactic cosmic rays (GCRs) from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that in addition to a possible global asymmetry in the north–south dimensions (meridional plane) of the heliosphere, it is also possible that different modulation (turbulence) conditions could exist between the two hemispheres of the heliosphere. We focus on illustrating the effects on GCR Carbon of asymmetrical modulation conditions combined with a heliosheath thickness that has a significant dependence on heliolatitude. To reflect different modulation conditions between the two heliospheric hemispheres in our numerical model, the enhancement of both polar and radial perpendicular diffusion off the ecliptic plane is assumed to differ from heliographic pole to pole. The computed radial GCR intensities at polar angles of 55° (approximating the Voyager 1 direction) and 125° (approximating the Voyager 2 direction) are compared at different energies and for both particle drift cycles. This is done in the context of illustrating how different values of the enhancement of both polar and radial perpendicular diffusion between the two hemispheres contribute to causing differences in radial intensities during solar minimum and moderate maximum conditions. We find that in the A > 0 cycle these differences between 55° and 125° change both quantitatively and qualitatively for the assumed asymmetrical modulation condition as reflected by polar diffusion, while in the A < 0 cycle, minute quantitative differences are obtained. However, when both polar and radial perpendicular diffusion have significant latitude dependences, major differences in radial intensities between the two polar angles are obtained in both polarity cycles. Furthermore, significant differences in radial intensity gradients obtained in the heliosheath at lower energies may suggest that the solar wind turbulence at and beyond the solar wind termination shock must have a larger latitudinal dependence.  相似文献   
6.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent.  相似文献   
7.
We discuss the structure and evolution of CIRs and their successors in the outer heliosphere. These structures undergo significant evolution as they are convected to greater heliocentric distances. A progression of different types of structure are observed at increasing distance from the Sun. Similar structures are observed at similar heliocentric distance at different portions of the solar cycle. CIRs and their successors are associated with many important physical processes in the outer heliosphere. We discuss the relationship between these structures and recurrent phenomena such as cosmic ray variations, and review some of the associated theoretical models on the role of corotating structures and global merged interaction regions (GMIRs) in global cosmic ray modulation. We also discuss some outstanding questions related to the origin of non-dispersive quasi-periodic particle enhancements associated with CIRs and their successors in the outer heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
In recent years the variability of the cosmic ray flux has become one of the main issues not only for the interpretation of the abundances of cosmogenic isotopes in cosmochronic archives like, e.g., ice cores, but also for its potential impact on the terrestrial climate. It has been re-emphasized that the cosmic ray flux is not only varying due to the solar activity-induced changes of the solar wind but also in response to the changing state of the interstellar medium surrounding the heliosphere. We demonstrate the significance of these external boundary condition changes along the galactic orbit of the Sun for the flux as well as spectra of cosmic rays. Such interstellar–terrestrial relations are a major topic of the International Heliophysical Year 2007.  相似文献   
9.
This chapter provides an overview of current efforts in the theory and modeling of CMEs. Five key areas are discussed: (1) CME initiation; (2) CME evolution and propagation; (3) the structure of interplanetary CMEs derived from flux rope modeling; (4) CME shock formation in the inner corona; and (5) particle acceleration and transport at CME driven shocks. In the section on CME initiation three contemporary models are highlighted. Two of these focus on how energy stored in the coronal magnetic field can be released violently to drive CMEs. The third model assumes that CMEs can be directly driven by currents from below the photosphere. CMEs evolve considerably as they expand from the magnetically dominated lower corona into the advectively dominated solar wind. The section on evolution and propagation presents two approaches to the problem. One is primarily analytical and focuses on the key physical processes involved. The other is primarily numerical and illustrates the complexity of possible interactions between the CME and the ambient medium. The section on flux rope fitting reviews the accuracy and reliability of various methods. The section on shock formation considers the effect of the rapid decrease in the magnetic field and plasma density with height. Finally, in the section on particle acceleration and transport, some recent developments in the theory of diffusive particle acceleration at CME shocks are discussed. These include efforts to combine self-consistently the process of particle acceleration in the vicinity of the shock with the subsequent escape and transport of particles to distant regions.  相似文献   
10.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock. Voyager 1 crossed this termination shock at ∼94 AU in 2004, while Voyager 2 crossed it in 2007 at a different heliolatitude, about 10 AU closer to the Sun. These different positions of the termination shock confirm the dynamic and cyclic nature of the shock’s position. Observations from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that apart from the dynamic nature caused by changing solar activity there also may exist a global asymmetry in the north–south (polar) dimensions of the heliosphere, in addition to the expected nose–tail asymmetry. This relates to the direction in which the heliosphere is moving in interstellar space and its orientation with respect to the interstellar magnetic field. In this paper we focus on illustrating the effects of this north–south asymmetry on modulation of galactic cosmic ray Carbon, between polar angles of 55° and 125°, using a numerical model which includes all four major modulation processes, the termination shock and the heliosheath. This asymmetry is incorporated in the model by assuming a significant dependence on heliolatitude of the thickness of the heliosheath. When comparing the computed spectra between the two polar angles, we find that at energies E < ∼1.0 GeV the effects of the assumed asymmetry on the modulated spectra are insignificant up to 60 AU from the Sun but become increasingly more significant with larger radial distances to reach a maximum inside the heliosheath. In contrast, with E > ∼1.0 GeV, these effects remain insignificant throughout the heliosphere even very close to the heliopause. Furthermore, we find that a higher local interstellar spectrum for Carbon enhances the effects of asymmetric modulation between the two polar angles at lower energies (E < ∼300 MeV). In conclusion, it is found that north–south asymmetrical effects on the modulation of cosmic ray Carbon depend strongly on the extent of the geometrical asymmetry of the heliosheath together with the assumed value of the local interstellar spectrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号