首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   1篇
航天技术   3篇
  2012年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The SOHO Solar EUV Monitor has been in operation since December 1995 onboard the SOHO spacecraft. This instrument is a highly stable transmission grating solar extreme ultraviolet spectrometer. It has made nearly continuous full disk solar irradiance measurements both within an 8 nm bandpass centered at 30.4 nm and throughout the 0.1 to 50 nm solar flux region since launch. The 30.4 nm flux, the 0.1 to 50 nm flux and the extracted soft X-ray (0.1 to 5 nm) flux are presented and compared with the behavior of solar proxies.  相似文献   
2.
Total Solar Irradiance (TSI) has been measured for more than three decades. These observations demonstrate that total irradiance changes on time scales ranging from minutes to years and decades. Considerable efforts have been made to understand the physical origin of irradiance variations and to model the observed changes using measures of sunspots and faculae. In this paper, we study the short-term variations in TSI during the declining portion and minimum of solar cycle 22 and the rising portion of cycle 23 (1993–1998). This time interval of low solar activity allows us to study the effect of individual sunspot groups on TSI in detail. In this paper, we indicate that the effect of sunspot groups on total irradiance may depend on their type in the Zürich classification system and/or their evolution, and on their magnetic configuration. Some uncertainties in the data and other effects are also discussed.  相似文献   
3.
Kuhn  J.R.  Floyd  L.  Fröhlich  C.  Pap  J.M. 《Space Science Reviews》2000,94(1-2):169-176

Despite 20 years of total solar irradiance measurements from space, the lack of high precision spatially resolved observations limits definitive answers to even simple questions like ``Are the solar irradiance changes caused solely by magnetic fields perturbing the radiative flux at the photosphere?" More subtle questions like how the aspheric structure of the sun changes with the magnetic cycle are only now beginning to be addressed with new tools like p-mode helioseismology. Solar 5-min oscillation studies have yielded precise information on the mean radial interior solar structure and some knowledge about the rotational and thermal solar asphericity. Unfortunately this progress has not been enough to generate a self-consistent theory for why the solar irradiance and luminosity vary with the magnetic cycle. We need sharper tools to describe and understand the sun's global aspheric response to its internal dynamo, and we need to be able to measure the solar cycle manifestation of the magnetic cycle on entropy transport from the interior to the photosphere in much the same way that we study the fundamentally more complex problem of magnetic flux transport from the solar interior. A space experiment called the Solar Physics Explorer for Radius, Irradiance and Shape (SPHERIS) and in particular its Astrometric and Photometric Telescope (APT) component will accomplish these goals.

  相似文献   
4.
Total solar and UV irradiances have been measured from various space platforms for more than two decades. More recently, observations of the “Variability of solar IRradiance and Gravity Oscillations” (VIRGO) experiment on SOHO provided information about spectral irradiance variations in the near-UV at 402 nm, visible at 500 nm, and near-IR at 862 nm. Analyses based on these space-borne irradiance measurements have convinced the skeptics that solar irradiance at various wavelengths and in the entire spectrum is changing with the waxing and waning solar activity. The main goal of this paper is to review the short- and long-term variations in total solar and spectral irradiances and their relation to the evolution of magnetic fields from solar cycles 21 to 23.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号