首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   2篇
  2009年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The Gaussian mixture probability hypothesis density (GM-PHD) recursion is a closed-form solution to the probability hypothesis density (PHD) recursion, which was proposed for jointly estimating the time-varying number of targets and their states from a sequence of noisy measurement sets in the presence of data association uncertainty, clutter, and miss-detection. However the GM-PHD filter does not provide identities of individual target state estimates, that are needed to construct tracks of individual targets. In this paper, we propose a new multi-target tracker based on the GM-PHD filter, which gives the association amongst state estimates of targets over time and provides track labels. Various issues regarding initiating, propagating and terminating tracks are discussed. Furthermore, we also propose a technique for resolving identities of targets in close proximity, which the PHD filter is unable to do on its own.  相似文献   
2.
The probability hypothesis density (PHD) filter is a practical alternative to the optimal Bayesian multi-target Alter based on finite set statistics. It propagates the PHD function, a first-order moment of the full multi-target posterior density. The peaks of the PHD function give estimates of target states. However, the PHD filter keeps no record of target identities and hence does not produce track-valued estimates of individual targets. We propose two different schemes according to which PHD filter can provide track-valued estimates of individual targets. Both schemes use the probabilistic data-association functionality albeit in different ways. In the first scheme, the outputs of the PHD filter are partitioned into tracks by performing track-to-estimate association. The second scheme uses the PHD filter as a clutter filter to eliminate some of the clutter from the measurement set before it is subjected to existing data association techniques. In both schemes, the PHD filter effectively reduces the size of the data that would be subject to data association. We consider the use of multiple hypothesis tracking (MHT) for the purpose of data association. The performance of the proposed schemes are discussed and compared with that of MHT.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号