首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航空   6篇
航天技术   1篇
航天   1篇
  2005年   1篇
  2001年   1篇
  1982年   1篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
  1968年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Error Analysis of Space-Stable Inertial Navigation Systems   总被引:1,自引:0,他引:1  
The error equations for a space-stable inertial navigation system are derived. This is done by directly perturbing the mechanization equations in the inertial frame and then transforming in open-loop fashion to the local-level frame. A rotating inertial platform and velocity and altitude damping are considered. The relations between errors in space-stable and local-level systems are noted. Numerical results are presented for certain random error sources.  相似文献   
2.
In order to stabilize the altitude calculation in an inertial navigation system, an altimeter is commonly used. In a conventional local-level mechanization, this is generally accomplished by correcting the vertical channel integrators with the difference between the inertial system and altimeter indication of vertical position. However, in a space-stable system the procedure is not as clear since a vertical channel is not physically present. Three altitude damping mechanizations for a space-stable inertial navigation system are proposed. The equivalent local-level mechanizations are then found by comparing error propagation equations in a common coordinate frame.  相似文献   
3.
The Stratospheric Sounding Unit (SSU) is part of the TOVS (TIROS Operational Vertical Sounder) on NOAA operational meteorological satellites. SSU measurements can be validated by comparison with temperature measurements from colocated rocket sondes. Systematic differences are found which vary with rocket station and sonde and are a function of height. However, these measurements are not adequate to define the performance of individual SSUs to a precision which would allow the observations from different SSUs to be combined in the study of diurnal and semidiurnal tides and of long term trends in stratospheric temperature. Instead this is achieved by detailed radiometric and spectroscopic investigation of each individual SSU, both prior to launch and during its operational life. Using the techniques descirbed, it is demonstrated that measurements from different SSUs can be combined with a relative error of less than 0.2K in equivalent brightness temperature.  相似文献   
4.
Vertical deflections and ocean currents introduce errors into ship's inertial navigation systems (SINS). In the absence of exact knowledge, these quantities may be treated as distance-dependent stationary random processes. However, these distance-dependent random processes enter SINS as time-dependent error sources. The autocorrelation functions of these time functions depend on the manner in which the ship maneuvers. An equation relating the time-dependent autocorrelation function to the distance-dependent autocorrelation function is derived. The time-dependent autocorrelation function is obtained for four different situations. The first two examples are ships steaming at constant heading and constant, but not necessarily known, velocity. The third example involves a ship tracking back and forth over the same path. The last example describes a ship that steams at a constant speed but changes heading in a random manner.  相似文献   
5.
A comparison of the error propagation in a local-level reference frame is derived for two inertial navigation systems; one has a local-level configuration, and the other has a space-stable configuration. The error propagation is shown to be equivalent for the two cases considered. This equivalence is demonstrated by starting with the error propagation equations for the space-stable system and transforming them to a local-level reference frame. The transformed equations are then compared with the classical local-level error equations, and the equivalence is noted. The specific implementation used in each case considers velocity damping but not altitude damping.  相似文献   
6.
The use of Doppler radar measurements to provide velocity damping for an aircraft inertial navigation system is considered. Three different Doppler antenna configurations are examined: two-axis stabilized, azimuth stabilized, and data stabilized antennas. A general reference velocity error equation is presented and appropriately evaluated for each of the Doppler configurations. Specific elements of the error equations are examined and physically interpreted for both local-level and space-stable inertial systems. Detailed examination of the interaction of Doppler radar and inertial navigation velocity error mechanisms is provided.  相似文献   
7.
Captive-carry electronic warfare (EW) tests evaluate the response of hardware-in-the-loop (HIL) missile seekers to an actual environment (test-range) including the presence of electronic attack. This paper describes a relative targeting architecture that displays the test-range results in geodetic coordinates using only the sensors available on board the captive-carry platform (GPS, INS, seekers). To derive the target position in geodetic coordinates, a lever-arm correction process is described that determines the position of each seeker and the corresponding pitch and yaw of the simulator. Combining the positional parameters of the seeker with its targeting variables, the seeker track point is displayed in geodetic coordinates, A track tagging algorithm is presented to identify the true target from the EW disruption using the drift angle from the inertial navigation system (INS), To eliminate the scintillation noise present in the track image, a Kalman filter in sensor coordinates is applied to the targeting variables allowing optimization of the track tagging. Experimental results from a recent EW field test using antiship cruise missile simulators are shown to demonstrate the feasibility of the approach for determining EW effectiveness in near real-time. Targeting accuracy is also quantified by comparing the derived target position with the true Global Positioning System (GPS) test-range position of the ship in the absence of electronic attack  相似文献   
8.
Lithified coniform structures are common within cyanobacterial mats in Yellowstone National Park hot springs. It is unknown whether these structures and the mats from which they develop are inhabited by the same cyanobacterial populations. Denaturing gradient gel electrophoresis and sequencing and phylogenetic analysis of 16S rDNA was used to determine whether (1) three different morphological types of lithified coniform structures are inhabited by different cyanobacterial species, (2) these species are partitioned along a vertical gradient of these structures, and (3) lithified and non-lithified sections of mat are inhabited by different cyanobacterial species. Our results, based on multiple samplings, indicate that the cyanobacterial community compositions in the three lithified morphological types were identical and lacked any vertical differentiation. However, lithified and non-lithified portions of the same mat were inhabited by distinct and different populations of cyanobacteria. Cyanobacteria inhabiting lithified structures included at least one undefined Oscillatorialean taxon, which may represent the dominant cyanobacteria genus in lithified coniform stromatolites, Phormidium, three Synechococcus-like species, and two unknown cyanobacterial taxa. In contrast, the surrounding mats contained four closely related Synechococcus-like species. Our results indicate that the distribution of lithified coniform stromatolites may be dependent on the presence of one or more microorganisms, which are phylogenetically different from those inhabiting surrounding non-lithified mats.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号