首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   1篇
航空   14篇
航天技术   6篇
航天   8篇
  2019年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   3篇
  1974年   1篇
排序方式: 共有28条查询结果,搜索用时 890 毫秒
1.
The Galileo spacecraft was launched by the Space Shuttle Atlantis on October 18, 1989. A two-stage Inertial Upper Stage propelled Galileo out of Earth parking orbit to begin its 6-year interplanetary transfer to Jupiter. Galileo has already received two gravity assists: from Venus on February 10, 1990 and from Earth on December 8, 1990. After a second gravity-assist flyby of Earth on December 8, 1992, Galileo will have achieved the energy necessary to reach Jupiter. Galileo's interplanetary trajectory includes a close flyby of asteroid 951-Gaspra on October 29, 1991, and, depending on propellant availability and other factors, there may be a second asteroid flyby of 243-Ida on August 28, 1993. Upon arrival at Jupiter on December 7, 1995, the Galileo Orbiter will relay data back to Earth from an atmospheric Probe which is released five months earlier. For about 75 min, data is transmitted to the Orbiter from the Probe as it descends on a parachute to a pressure depth of 20–30 bars in the Jovian atmosphere. Shortly after the end of Probe relay, the Orbiter ignites its rocket motor to insert into orbit about Jupiter. The orbital phase of the mission, referred to as the satellite tour, lasts nearly two years, during which time Galileo will complete 10 orbits about Jupiter. On each of these orbits, there will be a close encounter with one of the three outermost Galilean satellites (Europa, Ganymede, and Callisto). The gravity assist from each satellite is designed to target the spacecraft to the next encounter with minimal expenditure of propellant. The nominal mission is scheduled to end in October 1997 when the Orbiter enters Jupiter's magnetotail.List of Acronyms ASI Atmospheric Structure Instrument - EPI Energetic Particles Instrument - HGA High Gain Antenna - IUS Inertial Upper Stage - JOI Jupiter Orbit Insertion - JPL Jet Propulsion Laboratory - LRD Lightning and Radio Emissions Detector - NASA National Aeronautics and Space Administration - NEP Nephelometer - NIMS Near-Infrared Mapping Spectrometer - ODM Orbit Deflection Maneuver - OTM Orbit Trim Maneuver - PJR Perijove Raise Maneuver - PM Propellant Margin - PDT Pacific Daylight Time - PST Pacific Standard Time - RPM Retropropulsion Module - RRA Radio Relay Antenna - SSI Solid State Imaging - TCM Trajectory Correction Maneuver - UTC Universal Time Coordinated - UVS Ultraviolet Spectrometer - VEEGA Venus-Earth-Earth Gravity Assist  相似文献   
2.
Light scattering in planetary atmospheres   总被引:45,自引:0,他引:45  
This paper reviews scattering theory required for analysis of light reflected by planetary atmospheres. Section 1 defines the radiative quantities which are observed. Section 2 demonstrates the dependence of single-scattered radiation on the physical properties of the scatterers. Section 3 describes several methods to compute the effects of multiple scattering on the reflected light.  相似文献   
3.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
4.
The Limb Infrared Monitor of the Stratosphere (LIMS) experiment is a limb scanning infrared sounder designed to measure vertical temperature profiles and the concentrations of key chemical compounds which are important in the stratospheric ozone-nitrogen photochemistry. This paper describes results from the O3 and HNO3 channels with emphasis on validation of the data. Similar discussions of results from the other channels are presented in two companion papers published in these proceedings.  相似文献   
5.
In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification.  相似文献   
6.
Estimates of clear and low, middle and high cloud amount in fixed geographical regions approximately (160km)2 are being made routinely from 11.5μm radiance measurements of the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR). The purpose of validation is to determine the accuracy of the THIR cloud estimates. Validation requires that a comparison be made between the THIR estimates of cloudiness and the “true” cloudiness. The validation results reported in this paper use human analysis of concurrent but independent satellite images with surface meteorological and radiosonde observations to approximate the “true” cloudiness. Regression and error analyses are used to estimate the systematic and random errors of THIR derived clear amount.  相似文献   
7.
Michael Prior  Larry Dunham   《Acta Astronautica》2007,61(11-12):1010-1018
For 15 years, the science mission of the Hubble Space Telescope (HST) required using three of the six on-board rate gyros for attitude control. Failed gyros were eventually replaced through Space Shuttle Servicing Missions. To ensure the maximum science mission life, a two-gyro science (TGS) mode has been designed and implemented with performance comparable to three-gyro operations. The excellent performance has enabled a transition to operations with 2 gyros (by intentionally turning off a running gyro to save it for later use), and allows for an even greater science mission extension. Predictions show the gain in mission life approaching two years. In TGS mode, the rate information formerly provided by the third gyro is provided by another sensor. There are three submodes, each defined by the sensor used to provide the missing rate information (magnetometers, star trackers, and fine guidance sensors). Although each sensor has limitations, when used sequentially they provide the means to transition from relatively large, post-maneuver attitude errors of up to 10, to the arcsecond errors needed to transition to fine pointing required for science observing. Only small reductions in science productivity exist in TGS mode primarily due to more difficult target scheduling necessary to satisfy constraints imposed by the use of the star trackers. Scientists see no degradation in image quality due to the very low jitters levels that are nearly equivalent to three-gyro mode.  相似文献   
8.
The paper describes the method and initial results of assimilating the auroral peak E-region density (NmE) and the auroral equatorward boundary (EB) into the International Reference Ionosphere (IRI). The NmE and EB are obtained using a FUV based auroral model or FUV measurements in near real-time. Initial results show that the auroral NmE is often significantly larger than the NmE due to the solar EUV. This indicates the importance of including the contribution of precipitating electrons in IRI. The global equatorial boundary helps to improve the specification of the sub-auroral ionosphere trough in IRI. An IDL software package has been developed to interactively display the IRI parameters with assimilated NmE and EB. It can serve as an operational tool for space weather monitoring.  相似文献   
9.
美国TA公司同波音公司合作研制一种抗腐蚀垫片.用于飞机天线及其他需要导电和抗腐蚀的地方.这种商标为AEROBOND的垫片由波音公司申请专利(美国专利号:5791654),TA制造公司独家生产和销售.AEROBOND在飞机蒙皮和表面安装的天线、仪器或其他外部安装的设备之间提供一种导电密闭和流体密封的垫片.  相似文献   
10.
The instrument suite on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft is well suited to address several of Mercury’s outstanding geochemical problems. A combination of data from the Gamma-Ray and Neutron Spectrometer (GRNS) and X-Ray Spectrometer (XRS) instruments will yield the surface abundances of both volatile (K) and refractory (Al, Ca, and Th) elements, which will test the three competing hypotheses for the origin of Mercury’s high bulk metal fraction: aerodynamic drag in the early solar nebula, preferential vaporization of silicates, or giant impact. These same elements, with the addition of Mg, Si, and Fe, will put significant constraints on geochemical processes that have formed the crust and produced any later volcanism. The Neutron Spectrometer sensor on the GRNS instrument will yield estimates of the amount of H in surface materials and may ascertain if the permanently shadowed polar craters have a significant excess of H due to water ice. A comparison of the FeO content of olivine and pyroxene determined by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument with the total Fe determined through both GRNS and XRS will permit an estimate of the amount of Fe present in other forms, including metal and sulfides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号