首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 60 毫秒
1
1.
The Near-Infrared Spectrometer (NIS) instrument on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft is designed to map spectral properties of the mission target, the S-type asteroid 433 Eros, at near-infrared wavelengths diagnostic of the composition of minerals forming S asteroids. NIS is a grating spectrometer, in which light is directed by a dichroic beam-splitter onto a 32-element Ge detector (center wavelengths, 816–1486 nm) and a 32-element InGaAs detector (center wavelengths, 1371–2708 nm). Each detector reports a 32-channel spectrum at 12-bit quantization. The field-of-view is selectable using slits with dimensions calibrated at 0.37° × 0.76° (narrow slit) and 0.74° × 0.76° (wide slit). A shutter can be closed for dark current measurements. For the Ge detector, there is an option to command a 10x boost in gain. A scan mirror rotates the field-of-view over a 140° range, and a diffuse gold radiance calibration target is viewable at the sunward edge of the field of regard. Spectra are measured once per second, and up to 16 can be summed onboard. Hyperspectral image cubes are built up by a combination of down-track spacecraft motion and cross-track scanning of the mirror. Instrument software allows execution of data acquisition macros, which include selection of the slit width, number of spectra to sum, gain, mirror scanning, and an option to interleave dark spectra with the shutter closed among asteroid observations. The instrument was extensively characterized by on-ground calibration, and a comprehensive program of in-flight calibration was begun shortly after launch. NIS observations of Eros will largely be coordinated with multicolor imaging from the Multispectral Imager (MSI). NIS will begin observing Eros during approach to the asteroid, and the instrument will map Eros at successively higher spatial resolutions as NEAR's orbit around Eros is lowered incrementally to 25 km altitude. Ultimate products of the investigation will include composition maps of the entire illuminated surface of Eros at spatial resolutions as high as 300 m.  相似文献   
2.
ACE Spacecraft     
Chiu  M.C.  Von-Mehlem  U.I.  Willey  C.E.  Betenbaugh  T.M.  Maynard  J.J.  Krein  J.A.  Conde  R.F.  Gray  W.T.  Hunt  J.W.  Mosher  L.E.  McCullough  M.G.  Panneton  P.E.  Staiger  J.P.  Rodberg  E.H. 《Space Science Reviews》1998,86(1-4):257-284
The Johns Hopkins University Applied Physics Laboratory (JHU/APL) was responsible for the design and fabrication of the ACE spacecraft to accommodate the ACE Mission requirements and for the integration, test, and launch support for the entire ACE Observatory. The primary ACE Mission includes a significant number of science instruments - nine - whose diverse requirements had to be factored into the overall spacecraft bus design. Secondary missions for monitoring space weather and measuring launch vibration environments were also accommodated within the spacecraft design. Substantial coordination and cooperation were required between the spacecraft and instrument engineers, and all requirements were met. Overall, the spacecraft was kept as simple as possible in meeting requirements to achieve a highly reliable and low-cost design. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号