首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   3篇
航天技术   1篇
  1999年   1篇
  1995年   1篇
  1991年   1篇
  1977年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial deuterium enrichment in all organic fractions; Some fractions significantly enriched in nitrogen-15; Modest excesses of L-enantiomers in some racemisation-resistant molecules but no general enantiomeric preference. Despite much speculation about the possible role of Fischer-Tropsch catalytic hydrogenation of CO in production of organic molecules in the solar nebula, no convincing evidence for such material has been found in meteorites. A similarity between some meteoritic organics and those produced by Miller-Urey discharge synthesis may reflect involvement of common intermediates rather than the operation of electric discharges in the early solar system. Meteoritic organic matter constitutes a useful, but not exact, guide to what we shall find with in situ analytical and sample-return missions to cometary nuclei. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
2.
Carbon isotope ratios have been measured for CN in the coma of comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of 13C/12C values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus. The next decade should substantially improve our understanding of the distribution of C, H, N, and O isotopes in cometary organics. The isotopic composition of meteoritic organic matter is better understood and can serve as a useful analog for the cometary case.  相似文献   
3.
Synthesis of meteoritic amino acids probably took place in the aqueous sub-surface regions of one or more asteroid-sized parent bodies. Starting material for those reactions apparently consisted of a population of more simple compounds including a suite of aliphatic precursors characterised by (1) complete structural diversity, (2) prevalence of branched- over straight-chain species, (3) exponential decrease in abundance with increasing C number, (4) large enrichment in D, and, probably, (5) systematic decrease in 13C/12C with increasing C number. Those properties were apparently acquired during synthesis of the precursors by ion-molecule reactions in a presolar molecular cloud.  相似文献   
4.
Determinations of the abundances of iron and related elements in the photosphere, chromosphere and corona of the Sun and in solar and galactic cosmic rays are reviewed and compared with abundances derived from meteoritic data. Observed Solar System abundances are found to be in accord with predictions of nucleosynthesis under either hydrostatic or explosive conditions but cannot yet be used to define these processes uniquely.Distribution of iron among planets and meteorites can probably be adequately modelled by condensation and fractionation under equilibrium conditions above about 700 K but below that temperature it is likely that inhibited solid state diffusion perturbed attainment of equilibrium. Pertinent factors which are presently unknown include the mechanism responsible for metal-silicate fractionation, the grain size achieved by metallic iron in the nebula and whether iron-bearing silicate formed prior to accretion.Dedicated to Professor Harold C. UreyPublication Number 1560-Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号