首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
航空   24篇
航天技术   10篇
航天   18篇
  2016年   1篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   8篇
  2007年   1篇
  2005年   4篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1977年   1篇
  1967年   1篇
排序方式: 共有52条查询结果,搜索用时 468 毫秒
1.
The SOHO (SOlar and Heliospheric Observatory) satellite was launched on December 2nd 1995. After arriving at the Earth-Sun (L1) Lagrangian point on February 14th 1996, it began to continuously observe the Sun. As one of the instruments onboard SOHO, the EIT (Extreme ultraviolet Imaging Telescope) images the Sun's corona in 4 EUV wavelengths. The He II filter at 304 Å images the chromosphere and the base of the transition region at a temperature of 5 − 8 × 104 K; the Fe IX–X filter at 171 Å images the corona at a temperature of 1.3 × 106 K; the Fe XII filter at 195 Å images the quiet corona outside coronal holes at a temperature of 1.6 × 106 K; and the Fe XV filter at 284 Å images active regions with a temperature of 2.0 × 106 K. About 5000 images have been obtained up to the present. In this paper, we describe also some aspects of the telescope and the detector performance for application in the observations. Images and movies of all the wavelengths allow a look at different phenomena present in the Sun's corona, and in particular, magnetic field reconnection.  相似文献   
2.
A principal goal of the Mars Science Laboratory (MSL) rover Curiosity is to identify and characterize past habitable environments on Mars. Determination of the mineralogical and chemical composition of Martian rocks and soils constrains their formation and alteration pathways, providing information on climate and habitability through time. The CheMin X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument on MSL will return accurate mineralogical identifications and quantitative phase abundances for scooped soil samples and drilled rock powders collected at Gale Crater during Curiosity’s 1-Mars-year nominal mission. The instrument has a Co X-ray source and a cooled charge-coupled device (CCD) detector arranged in transmission geometry with the sample. CheMin’s angular range of 5° to 50° 2θ with <0.35° 2θ resolution is sufficient to identify and quantify virtually all minerals. CheMin’s XRF requirement was descoped for technical and budgetary reasons. However, X-ray energy discrimination is still required to separate Co?Kα from Co?Kβ and Fe?Kα photons. The X-ray energy-dispersive histograms (EDH) returned along with XRD for instrument evaluation should be useful in identifying elements Z>13 that are contained in the sample. The CheMin XRD is equipped with internal chemical and mineralogical standards and 27 reusable sample cells with either Mylar? or Kapton? windows to accommodate acidic-to-basic environmental conditions. The CheMin flight model (FM) instrument will be calibrated utilizing analyses of common samples against a demonstration-model (DM) instrument and CheMin-like laboratory instruments. The samples include phyllosilicate and sulfate minerals that are expected at Gale crater on the basis of remote sensing observations.  相似文献   
3.
Polar format algorithm for bistatic SAR   总被引:4,自引:0,他引:4  
Matched filtering (MF) of phase history data is a mathematically ideal but computationally expensive approach to bistatic synthetic aperture radar (SAR) image formation. Fast backprojection algorithms (BPAs) for image formation have recently been shown to give improved O(N/sup 2/ log/sub 2/N) performance. An O(N/sup 2/ log/sub 2/N) bistatic polar format algorithm (PFA) based on a bistatic far-field assumption is derived. This algorithm is a generalization of the popular PFA for monostatic SAR image formation and is highly amenable to implementation with existing monostatic image formation processors. Limits on the size of an imaged scene, analogous to those in monostatic systems, are derived for the bistatic PFA.  相似文献   
4.
This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.  相似文献   
5.
A concept for a new space-based cosmology mission called the Dark Ages Radio Explorer (DARE) is presented in this paper. DARE’s science objectives include: (1) When did the first stars form? (2) When did the first accreting black holes form? (3) When did Reionization begin? (4) What surprises does the end of the Dark Ages hold (e.g., Dark Matter decay)? DARE will use the highly-redshifted hyperfine 21-cm transition from neutral hydrogen to track the formation of the first luminous objects by their impact on the intergalactic medium during the end of the Dark Ages and during Cosmic Dawn (redshifts z = 11–35). It will measure the sky-averaged spin temperature of neutral hydrogen at the unexplored epoch 80–420 million years after the Big Bang, providing the first evidence of the earliest stars and galaxies to illuminate the cosmos and testing our models of galaxy formation. DARE’s approach is to measure the expected spectral features in the sky-averaged, redshifted 21-cm signal over a radio bandpass of 40–120 MHz. DARE orbits the Moon for a mission lifetime of 3 years and takes data above the lunar farside, the only location in the inner solar system proven to be free of human-generated radio frequency interference and any significant ionosphere. The science instrument is composed of a low frequency radiometer, including electrically-short, tapered, bi-conical dipole antennas, a receiver, and a digital spectrometer. The smooth frequency response of the antennas and the differential spectral calibration approach using a Markov Chain Monte Carlo technique will be applied to detect the weak cosmic 21-cm signal in the presence of the intense solar system and Galactic foreground emissions.  相似文献   
6.
Radar target identification is performed using time-domain bispectral features. The classification performance is compared with the performance of other classifiers that use either the impulse response or frequency domain response of the unknown target. The classification algorithms developed here are based on the spectral or the bispectral energy of the received backscatter signal. Classification results are obtained using simulated radar returns derived from measured scattering data from real radar targets. The performance of classifiers in the presence of additive Gaussian (colored or white), exponential noise, and Weibull noise are considered, along with cases where the azimuth position of the target is unknown. Finally, the effect on classification performance of responses horn extraneous point scatterers is investigated  相似文献   
7.
Quasars are the most luminous sources in the Universe. They are currently observed out to redshift z≈7z7 when the Universe was less than one tenth of its present age. Since their discovery 50 years ago astronomers have dreamed of using them as standard candles. Unfortunately quasars cover a very large range (8 dex) of luminosity making them far from standard. We briefly review several methods that can potentially exploit quasars properties and allow us to obtain useful constraints on principal cosmological parameters. Using our 4D Eigenvector 1 formalism we have found a way to effectively isolate quasars radiating near the Eddington limit. If the Eddington ratio is known, under several assumptions it is possible to derive distance independent luminosities. We discuss the main statistical and systematic errors involved, and whether these “standard Eddington candles” can be actually used to constrain cosmological models.  相似文献   
8.
9.
The fossil record of the subsurface biosphere is sparse. Results obtained on subsurface filamentous fabrics (SFF) from >225 paleosubsurface sites in volcanics, oxidized ores, and paleokarst of subrecent to Proterozoic age are presented. SFF are mineral encrustations on filamentous or fibrous substrates that formed in subsurface environments. SFF occur in association with low-temperature aqueous mineral assemblages and consist of tubular, micron-thick (median 1.6 micron) filaments in high spatial density, which occur as irregular masses, matted fabrics, and vertically draped features that resemble stalactites. Micron-sized filamentous centers rule out a stalactitic origin. Morphometric analysis of SFF filamentous forms demonstrates that their shape more closely resembles microbial filaments than fibrous minerals. Abiogenic filament-like forms are considered unlikely precursors of most SFF, because abiogenic forms differ in the distribution of widths and have a lower degree of curvature and a lower number of direction changes. Elemental analyses of SFF show depletion in immobile elements (e.g., Al, Th) and a systematic enrichment in As and Sb, which demonstrates a relation to environments with high flows of water. Sulfur isotopic analyses are consistent with a biological origin of a SFF sample from a Mississippi Valley-Type deposit, which is consistent with data in the literature. Fe isotopes in SFF and active analogue systems, however, allow no discrimination between biogenic and abiogenic origins. The origin of most SFF is explained as permineralized remains of microbial filaments that possibly record rapid growth during phases of high water flow that released chemical energy. It is possible that some SFF formed due to encrustation of mineral fibers. SFF share similarities with Microcodium from soil environments. SFF are a logical target in the search for past life on Mars. The macroscopic nature of many SFF allows for their relatively easy in situ recognition and targeting for more detailed microstructural and geochemical analysis.  相似文献   
10.
Although the process of establishing a memoryof a location is necessary for navigation,relatively little is known about theinformation that humans use when forming placememories. We examined the relative importanceof distance and angular information aboutlandmarks in place learning. Participantsrepeatedly learned a target location inrelation to three distinct landmarks in animmersive computer-generated (virtual)environment. Later, during testing, theyattempted to return to that location. Theconfigurations of landmarks used during testingwere altered from those participants learned inorder to separate the effects of metricdistance information and information aboutinter-landmark angles. In general,participants showed greater reliance ondistance information than angular information. This reliance was affected by nonmetricrelationships present during learning, as wellas by the degree to which the learnedenvironment contained right or straightangles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号