首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   5篇
航天技术   1篇
航天   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2003年   1篇
  1999年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The Ares I–X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. Ares I–X is scheduled for a 2009 flight date, early enough in the Ares I design and development process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Decisions on Ares I–X scope, flight test objectives, and FTV fidelity were made prior to the Ares I systems requirements being baselined. This was necessary in order to achieve a development flight test to impact the Ares I design. Differences between the Ares I–X and the Ares I configurations are artifacts of formulating this experimental project at an early stage and the natural maturation of the Ares I design process. This paper describes the similarities and differences between the Ares I–X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I–X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I–X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I–X flight test will provide in similitude to Ares I—as well as what the test will not provide—is important in the continued execution of the Ares I–X mission leading to its flight and the continued design and development of Ares I.  相似文献   
2.
A major objective of the workshop was to learn about the chemical composition, physical structure, and thermodynamic conditions of the outer parts of the solar nebula where comets formed. Here we sum up what we have learned from years of research about the molecular constituents of comet comae primarily from in situ measurements of Comet 1P/Halley and remote sensing of Comets 1P/Halley, Hale-Bopp (C/1995 O1), and Hyakutake (C/1996 B2). These three bright comets are presumably captured Oort cloud comets. We summarize the analyses of these data to predict the composition of comet nuclei and project them further to the composition, structure, and thermodynamic conditions in the nebula. Near-future comet missions are directed toward less active short-period Jupiter-family comets. Thus, future analyses will afford a better understanding of the diversity of these two major groups of comets and their respective regions of origin in the solar or presolar nebula. We conclude with recommendations for determining critical data needed to aid in further analyses. Results of the workshop provide new guidelines and constraints for modeling the solar nebula. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
3.
For the experimental determination of the dynamic wind tunnel data, a new combined motion test capability was developed at the German–Dutch Wind Tunnels DNW for their 3 m Low Speed Wind Tunnel NWB in Braunschweig, Germany, using a unique six degree-of-freedom test rig called ‘Model Positioning Mechanism’ (MPM) as an improved successor to the older systems. With that cutting-edge device, several transport aircraft configurations including a blended wing body configuration were tested in different modes of oscillatory motions roll, pitch and yaw as well as delta-wing geometries like X-31 equipped with remote controlled rudders and flaps to be able to simulate realistic flight maneuvers, e.g., a Dutch Roll. This paper describes the motivation behind these tests and the test setup and in addition gives a short introduction into time accurate maneuver-testing capabilities incorporating models with remote controlled control surfaces. Furthermore, the adaptation of numerical methods for the prediction of dynamic derivatives is described and some examples with the DLR-F12 configuration will be given. The calculations are based on RANS-solution using the finite volume parallel solution algorithm with an unstructured discretization concept (DLR TAU-code).  相似文献   
4.
Huebner  W.F.  Benkhoff  J. 《Space Science Reviews》1999,90(1-2):117-130
A major goal of comet research is to determine conditions in the outer solar nebula based on the chemical composition and structure of comet nuclei. The old view was to use coma abundances directly for the chemical composition of the nucleus. However, since the composition of the coma changes with heliocentric distance, r, the new view is that the nucleus composition msut be determined from analysis of coma mixing ratios as a function of r. Taking advantage of new observing technology and the early detection of the very active Comet Hale-Bopp (C/1995 O1) allows us to determine the coma mixing ratios over a large range of heliocentric distances. In our analysis we assume three sources for the coma gas: (1) the surface of the nucleus (releasing water vapor), (2) the interior of the porous nucleus (releasing many species more volatile than water), and (3) the distributed source (releasing gases from ices and hydrocarbon polycondensates trapped and contained in coma dust). Molecules diffusing inside the nucleus are sublimated by heat transported into the interior. The mixing ratios in the coma are modeled assuming various chemical compositions and structural parameters of the spinning nucleus as it moves in its orbit from large heliocentric distance through perihelion. We have combined several sets of observational data of Comet Hale-Bopp for H2O (from OH) and CO, covering the spectrum range from radio to UV. Many inconsistencies in the data were uncovered and reported to the observers for a reanalysis. Since post-perihelion data are still sparse, we have combined pre- and post-perihelion data. The resulting mixing ratio of CO relative to H2O as a function of r is presented with a preliminary analysis that still needs to be expanded further. Our fit to the data indicates that the total CO release rate (from the nucleus and distributed sources) relative to that of H2O is 30% near perihelion. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.
The dynamic derivatives are widely used in linear aerodynamic models in order to determine the flying qualities of an aircraft: the ability to predict them reliably, quickly and sufficiently early in the design process is vital in order to avoid late and costly component redesigns. This paper describes experimental and computational research dealing with the determination of dynamic derivatives carried out within the FP6 European project SimSAC. Numerical and experimental results are compared for two aircraft configurations: a generic civil transport aircraft, wing-fuselage-tail configuration called the DLR-F12 and a generic Transonic CRuiser, which is a canard configuration. Static and dynamic wind tunnel tests have been carried out for both configurations and are briefly described within this paper. The data generated for both the DLR-F12 and TCR configurations include force and pressure coefficients obtained during small amplitude pitch, roll and yaw oscillations while the data for the TCR configuration also include large amplitude oscillations, in order to investigate the dynamic effects on nonlinear aerodynamic characteristics. In addition, dynamic derivatives have been determined for both configurations with a large panel of tools, from linear aerodynamic (Vortex Lattice Methods) to CFD. This work confirms that an increase in fidelity level enables the dynamic derivatives to be calculated more accurately. Linear aerodynamics tools are shown to give satisfactory results but are very sensitive to the geometry/mesh input data. Although all the quasi-steady CFD approaches give comparable results (robustness) for steady dynamic derivatives, they do not allow the prediction of unsteady components for the dynamic derivatives (angular derivatives with respect to time): this can be done with either a fully unsteady approach i.e. with a time-marching scheme or with frequency domain solvers, both of which provide comparable results for the DLR-F12 test case. As far as the canard configuration is concerned, strong limitations for the linear aerodynamic tools are observed. A key aspect of this work are the acceleration techniques developed for CFD methods, which allow the computational time to be dramatically reduced while providing comparable results.  相似文献   
6.
Topography of the surface of a comet nucleus is likely rough at all scales smaller than the mean effective radius. We present a flexible and easily scalable model for quantitative calculations simulating the effects of comet nucleus topography on gas release and dust mantle evolution. The topographic features we describe must be large enough (typically> 10 m) so that they will not erode in one orbit of the nucleus around the Sun. The maximum effective size of a hill is about 1/√2 times the effective radius of the nucleus. If it is larger, then an ellipsoidal shape of the nucleus is more appropriate. The procedure described here also permits for inhomogeneous composition of the topographic features, leading to locally different rates of gas production (e.g., jet-like features and filaments) or different thicknesses of the dust mantle. It also can give rise to different temperature patches, locally varying albedos and emissivities, and may explain the formation of permanent dust mantles.  相似文献   
7.
In this introductory presentation, material is categorized according to our state of knowledge: What do we know, what do we think we know but don’t know certainly, and what do we not know but often describe it as if it were a well-established fact about comets, their nuclei, their composition, and processes within comets and their nuclei. The material is presented not with the intend to criticize laboratory work simulating condition in comet nuclei, or observers analyzing their observations, nor modelers using data from both these sources to improve our understanding and make predictions. The intent is to provoke discussion and dialog between these groups to avoid overstating the results. What is a Comet? A comet is a diffuse appearing celestial phenomenon moving in an orbit about the Sun. The central body, the nucleus, is composed of ice and dust. It is the source of all cometary activity, including comae and tails. We distinguish between molecular (including atoms and ions) and dust comae. At heliocentric distances of about 1 AU and less, the hydrogen coma typically has dimensions larger than the Sun. The tails are composed of dust, neutral atoms and molecules, and plasma.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号