首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
航空   13篇
  2013年   1篇
  2006年   4篇
  2005年   4篇
  1999年   3篇
  1998年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
3.
Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: (i) weakness of collisional dissipation and (ii) presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field, with the Kolmogorov scaling $k_{\perp}^{-5/3}$ for the perpendicular cascade and $k_{\|}^{-2}$ for the parallel one. Solar wind turbulence is compressible in nature: density fluctuations at MHD scales have the Kolmogorov spectrum. Velocity fluctuations do not follow magnetic field ones: their spectrum is a power-law with a ?3/2 spectral index. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuation spectrum has a local flattening. Around ion scales, magnetic spectra are variable and ion instabilities occur as a function of the local plasma parameters. Between ion and electron scales, a small scale turbulent cascade seems to be established. It is characterized by a well defined power-law spectrum in magnetic and density fluctuations with a spectral index close to ?2.8. Approaching electron scales, the fluctuations are no more self-similar: an exponential cut-off is usually observed (for time intervals without quasi-parallel whistlers) indicating an onset of dissipation. The small scale inertial range between ion and electron scales and the electron dissipation range can be together described by $\sim k_{\perp}^{-\alpha}\exp(-k_{\perp}\ell_{d})$ , with α?8/3 and the dissipation scale ? d close to the electron Larmor radius ? d ?ρ e . The nature of this small scale cascade and a possible dissipation mechanism are still under debate.  相似文献   
4.
5.
Interplanetary outflows from coronal mass ejections (ICMEs) are structures shaped by their magnetic fields. Sometimes these fields are highly ordered and reflect properties of the solar magnetic field. Field lines emerging in CMEs are presumably connected to the Sun at both ends, but about half lose their connection at one end by the time they are observed in ICMEs. All must eventually lose one connection in order to prevent a build-up of flux in the heliosphere; but since little change is observed between 1 AU and 5 AU, this process may take months to years to complete. As ICMEs propagate out into the heliosphere, they kinematically elongate in angular extent, expand from higher pressure within, distort owing to inhomogeneous solar wind structure, and can compress the ambient solar wind, depending upon their relative speed. Their magnetic fields may reconnect with solar wind fields or those of other ICMEs with which they interact, creating complicated signatures in spacecraft data.  相似文献   
6.
While interplanetary coronal mass ejections (ICMEs) are understood to be the heliospheric counterparts of CMEs, with signatures undeniably linked to the CME process, the variability of these signatures and questions about mapping to observed CME features raise issues that remain on the cutting edge of ICME research. These issues are discussed in the context of traditional understanding, and recent results using innovative analysis techniques are reviewed.  相似文献   
7.
Corotating interaction regions (CIRs) in the middle heliosphere have distinct morphological features and associated patterns of turbulence and energetic particles. This report summarizes current understanding of those features and patterns, discusses how they can vary from case to case and with distance from the Sun and possible causes of those variations, presents an analytical model of the morphological features found in earlier qualitative models and numerical simulations, and identifies aspects of the features and patterns that have yet to be resolved. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
9.
We present an overview of the properties of magnetohydrodynamic turbulence within corotating interaction regions (CIRs) and its effects on energetic particles. We stress the importance of both the population of fluctuations in the inner heliosphere and the changing local environment in determining their properties at larger heliospheric distances. We present observations from two typical CIRs, one at 0.3 AU before compression regions have formed and the other well developed at 5.1 AU, and discuss the properties of fluctuations within them and show that it is possible to distinguish different regions of the CIR on the basis of the turbulence itself. The strength of the turbulence varies strongly within and close to the CIRs, explaining changes in the mean free path of energetic particles of several orders of magnitude with implications for the modulation of cosmic rays and for diffusive acceleration of particles. The mechanisms by which turbulent fluctuations within interaction regions scatter energetic particles are briefly discussed on a theoretical basis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
10.
Simnett  G. M.  Kunow  H.  Flückiger  E.  Heber  B.  Horbury  T.  Kóta  J.  Lazarus  A.  Roelof  E. C.  Simpson  J. A.  Zhang  M.  Decker  R. B. 《Space Science Reviews》1998,83(1-2):215-258
The corotating particle events give us a unique opportunity to probe the three-dimensional structures of the heliosphere. This is especially true if we have observations over a period of extreme stability of the CIRs, such as existed over the recent solar minimum. We discuss how the observations fit into the context of current heliospheric magnetic field models. The energetic particle signatures of CIRs throughout the regions of the heliosphere covered by the deep-space missions are reviewed. The CIRs accelerate these particles and at the same time modulate both the high energy galactic cosmic rays and the anomalous cosmic rays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号