首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   3篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有3条查询结果,搜索用时 296 毫秒
1
1.
Several major fuel cell projects and their status are described. The fuel cell types discussed are phosphoric acid, molten carbonate, solid oxide, and polymer. One of the technologies is very close to commercialization. Two others offer the possibility for higher efficiency and large capacity electric generation using coal. Still another may be the answer to the key issues facing the transportation sector  相似文献   
2.
The high efficiency environmental benefits and other attributes of fuel cells have attracted world-wide attention to the technology. Approximately 250 phosphoric acid fuel cell (PAFC) power units, 35 molten carbonate fuel cell (MCFC) stacks, and 12 solid oxide fuel cell (SOFC) modules have been or are being operated. Total capacity installed or operating is close to 45 MW. Fuel cell development has progressed to where complete power plants have reached nearly 16,000 operating hours and this continues to increase. Developers in the U.S. and Japan have embarked on extensive government and private programs to commercialize the technology in those countries and abroad. By mid-1994, the U.S. sold and shipped to other countries at least 33 PAFC 200 kW plants, 20 675 kW PAFC stacks, two SOFC 25 kW modules, and one MCFC system. Additional units have been produced for the domestic market. There is intense interest in Japan where there are very stringent environmental regulations and fuel prices are high. The fuel cell can respond with its combined attributes of low emissions and relative high efficiency. In Europe, the environmental cleanliness of fuel cell power units holds the promise of preserving the quality of life, motivating support and development of the technology. Canada and Australia have spawned important development programs. Interest continues to increase in other parts of the world. The author reviews the 1994 status and outlines the future development trends in this area  相似文献   
3.
The technology of fuel cells is heating up. A world that, ten years ago, was unaware of the concept can now witness approximately 200 fuel cell units operating in 15 countries. Energy planners and decision makers are becoming aware that, in addition to a continual increase in installations, the reliability of early commercial units is outstanding and the cost is dropping. They have begun to ask whether fuel cells might fit into their future. While the fuel cell concept is simple, determining which type of fuel cell to consider may prove taxing. The multiplicity of fuel cells and their development programs, coupled with the amount of subject material and claims-versus-reality, may seem overwhelming. Fuel cell commercialization activities in North America are the focus of five manufacturers that are developing four types [fuel cells are typed by electrolyte: the 200°C phosphoric acid (PAFC); the 80°C proton exchange membrane (PEM); the 650°C molten carbonate (MCFC); and the 1,000°C solid oxide (SOFC) fuel cells]. Each fuel cell promises the attractive combination of fairly high efficiency and superior environmental performance compared to the presently available fossil-fueled electric generation technologies. As a result, fuel cells are particularly easy to site. There are additional advantages such as: excellent availability; electrical VAR control; quick ramp rate; remote/unattended operation; and redundancy when multiple units are installed. After earlier success in space, fuel cells are being applied to the commercial sector as on-site cogeneration units mostly fueled by natural gas. They are being considered for larger distributed generators (natural gas) and for vehicular power plants (methanol)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号