首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   4篇
  2003年   1篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
The National Aeronautics and Space Administration (NASA), along with members of the aircraft industry, recently developed technologies for a new supersonic aircraft. One of the technological areas considered for this aircraft is the use of video cameras and image-processing equipment to aid the pilot in detecting other aircraft in the sky. The detection techniques should provide high detection probability for obstacles that can vary from subpixel to a few pixels in size, while maintaining a low false alarm probability in the presence of noise and severe background clutter. Furthermore, the detection algorithms must be able to report such obstacles in a timely fashion, imposing severe constraints on their execution time. Approaches are described here to detect airborne obstacles on collision course and crossing trajectories in video images captured from an airborne aircraft. In both cases the approaches consist of an image-processing stage to identify possible obstacles followed by a tracking stage to distinguish between true obstacles and image clutter, based on their behavior. For collision course object detection, the image-processing stage uses morphological filter to remove large-sized clutter. To remove the remaining small-sized clutter, differences in the behavior of image translation and expansion of the corresponding features is used in the tracking stage. For crossing object detection, the image-processing stage uses low-stop filter and image differencing to separate stationary background clutter. The remaining clutter is removed in the tracking stage by assuming that the genuine object has a large signal strength, as well as a significant and consistent motion over a number of frames. The crossing object detection algorithm was implemented on a pipelined architecture from DataCube and runs in real time. Both algorithms have been successfully tested on flight tests conducted by NASA.  相似文献   
2.
In this paper, we investigate data quantization effects in constant false alarm rate (CFAR) signal detection. Exponential distribution for the input data and uniform quantization are assumed for the CFAR detector analysis. Such assumptions are valid in the case of radar for a Swerling I target in Gaussian clutter plus noise and a receiver with analog square-law detection followed by analog-to-digital (A/D) conversion. False alarm and detection probabilities of the cell averaging (CA) and order statistic (OS) CFAR detectors operating on quantized observations are analytically determined. In homogeneous backgrounds with 15 dB clutter power fluctuations, we show analytically that a 12-bit uniform quantizer is sufficient to achieve false alarm rate invariance. Detector performance characteristics in nonhomogeneous backgrounds, due to regions of clutter power transitions and multiple interfering targets, are also presented and detailed comparisons are given  相似文献   
3.
Analysis of CFAR processors in homogeneous background   总被引:1,自引:0,他引:1  
Five different constant false alarm rate (CFAR) radar processing schemes are considered and their performances analyzed in homogeneous and nonhomogeneous backgrounds, the latter specifically being the multiple target environment and regions of clutter transitions. The average detection threshold for each of the CFAR schemes was computed to measure and compare the detection performance in homogeneous noise background. The exponential noise model was used for clear and clutter backgrounds to get closed-form expressions. The processor types compared are: the cell-averaging CFAR, the `greatest of' CFAR, the `smallest of' CFAR, the ordered-statistics CFAR, and a modified ordered-statistics processor called the trimmed-mean CFAR  相似文献   
4.
A variably trimmed mean CFAR radar detector   总被引:1,自引:0,他引:1  
A variably trimmed mean (VTM) constant false alarm rate (CFAR) detector in which the threshold is determined by processing a linear combination of a group of ordered samples in each window is introduced. Unlike the trimmed mean detector, the number of ordered samples that require further processing is allowed to vary according to a data-dependent rule. It is demonstrated that the VTM detector exhibits performance characteristics that are independent of the total (stationary) noise power. Simulated performance results are presented for regions of clutter power transitions and for multiple target environments to illustrate the possible improvement over the order-statistic detector that can be obtained by using a VTM detector  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号