首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航空   3篇
航天技术   6篇
航天   5篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2003年   3篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1971年   1篇
排序方式: 共有14条查询结果,搜索用时 187 毫秒
1.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
3.
Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.  相似文献   
4.
5.
The cryptoendolithic microbial community in the Ross Desert (McMurdo Dry Valleys) of Antarctica exists at temperatures significantly below the temperature optima of the primary producers. Surviving near the limit of their physiological adaptability, the organisms are under severe environmental stress, so further deterioration in the environment results in cell damage and death. The sequence of events leading to extinction is considered to be a terrestrial analog for disappearance of possible life on early Mars. Progressive stages of cell damage and death in the Ross Desert material are documented with transmission electron microscopy.  相似文献   
6.
Dried monolayers of Chroococcidiopsis sp. 029, a desiccation-tolerant, endolithic cyanobacterium, were exposed to a simulated martian-surface UV and visible light flux, which may also approximate to the worst-case scenario for the Archean Earth. After 5 min, there was a 99% loss of cell viability, and there were no survivors after 30 min. However, this survival was approximately 10 times higher than that previously reported for Bacillus subtilis. We show that under 1 mm of rock, Chroococcidiopsis sp. could survive (and potentially grow) under the high martian UV flux if water and nutrient requirements for growth were met. In isolated cells, phycobilisomes and esterases remained intact hours after viability was lost. Esterase activity was reduced by 99% after a 1-h exposure, while 99% loss of autofluorescence required a 4-h exposure. However, cell morphology was not changed, and DNA was still detectable by 4',6-diamidino-2-phenylindole staining after an 8-h exposure (equivalent to approximately 1 day on Mars at the equator). Under 1 mm of simulant martian soil or gneiss, the effect of UV radiation could not be detected on esterase activity or autofluorescence after 4 h. These results show that under the intense martian UV flux the morphological signatures of life can persist even after viability, enzymatic activity, and pigmentation have been destroyed. Finally, the global dispersal of viable, isolated cells of even this desiccation-tolerant, ionizing-radiation-resistant microorganism on Mars is unlikely as they are killed quickly by unattenuated UV radiation when in a desiccated state. These findings have implications for the survival of diverse microbial contaminants dispersed during the course of human exploratory class missions on the surface of Mars.  相似文献   
7.
The cryptoendolithic microorganisms that live inside rocks in the frigid Ross Desert of Antarctica can serve as a terrestrial model for what may have happened to life forms on Mars when the planet became dry and cold. Trace fossils of microbial rock colonization exist in Antarctica, and similar structures could ave formed on Mars. In some respects, such trace fossils could be an easier target for life-detection systems than fossils of cellular structures.  相似文献   
8.
The problem of integrating remotely sensed images acquired from different sensor systems is primarily associated with their registration into a common reference projection. This registration problem has to be considered not only between the image data themselves but also with other data already existing in various geographical data bases.The advent of the second generation of earth observation satellites is emphasizing this situation by providing imagery in different geometric configurations. Images will be acquired from many sensors at different spatial resolutions (LANDSAT MSS and TM, SPOT HRV MLA and PLA) on different dates and modes (panchromatic, multispectral, nadir and off-nadir).In order to provide image data in a geometric format compatible with the Canadian National Topographic System, Canada is developing a Multi-Observational Satellite Image Correction System (MOSAICS) that will provide geocoded data resampled into a common reference projection. This paper presents the characteristics of the geocoded products with examples from multiple sensors and different dates, and addresses the processing requirements of the satellite ground station. It also illustrates the use of digital processing techniques to derive digital elevation information from geocoded stereo imagery.  相似文献   
9.
The primitive characteristics of the cyanobacterium Chroococcidiopsis suggest that it represents a very ancient type of the group. Its morphology is simple but shows a wide range of variability, and it resembles certain Proterozoic microfossils. Chroococcidiopsis is probably the most desiccation-resistant cyanobacterium, the sole photosynthetic organism in extreme arid habitats. It is also present in a wide range of other extreme environments, from Antarctic rocks to thermal springs and hypersaline habitats, but it is unable to compete with more specialized organisms. Genetic evidence suggests that all forms belong to a single species. Its remarkable tolerance of environmental extremes makes Chroococcidiopsis a prime candidate for use as a pioneer photosynthetic microorganism for terraforming of Mars. The hypolithic microbial growth form (which lives under stones of a desert pavement) could be used as a model for development of technologies for large-scale Martian farming.  相似文献   
10.
The Atacama along the Pacific Coast of Chile and Peru is one of the driest and possibly oldest deserts in the world. It represents an extreme habitat for life on Earth and is an analog for life in dry conditions on Mars. We report on four years (September 1994-October 1998) of climate and moisture data from the extreme arid region of the Atacama. Our data are focused on understanding moisture sources and their role in creating suitable environments for photosynthetic microorganisms in the desert surface. The average air temperature was 16.5 degrees C and 16.6 degrees C in 1995 and 1996, respectively. The maximum air temperature recorded was 37.9 degrees C, and the minimum was -5.7 degrees C. Annual average sunlight was 336 and 335 W m(-2) in 1995 and 1996, respectively. Winds averaged a few meters per second, with strong f?hn winds coming from the west exceeding 12 m s(-1). During our 4 years of observation there was only one significant rain event of 2.3 mm, which occurred near midnight local time. We suggest that this event was a rainout of a heavy fog. It is of interest that the strong El Ni?o of 1997-1998 brought heavy rainfall to the deserts of Peru, but did not bring significant rain to the central Atacama in Chile. Dew occurred at our station frequently following high nighttime relative humidity, but is not a significant source of moisture in the soil or under stones. Groundwater also does not contribute to surface moisture. Only the one rain event of 2.3 mm resulted in liquid water in the soil and beneath stones for a total of only 65-85 h over 4 years. The paucity of liquid water under stones is consistent with the apparent absence of hypolithic (under-stone) cyanobacteria, the only known primary producers in such extreme deserts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号