首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   1篇
航天技术   1篇
  2009年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
This paper presents a new approach to forecasting short-term Lyα solar irradiance variations due to the presence and evolution of magnetically heated regions in the Sun’s outer atmosphere. This scheme is based on images of the solar disk at key wavelengths, currently Ca II K filtergrams, maps of backscattered solar Lyα from the interplanetary medium, and helioseismic images of large far-side active regions. The combination of these resources allows accurate forecasts of the UV solar irradiance several days in advance. The technique takes into consideration the evolution of recently observed activity on the Sun’s near surface as well as active regions on the Sun’s far side. The far-side helioseismic maps and the Lyα backscattering are very important, because of the long period of time features spend on the Sun’s far side compared with their typical evolution time and their relatively sudden appearance on the near side. We describe the basics of the forecasting technique and apply it to a case study that shows how the technique dramatically improves Lyα irradiance forecasting. An extension of the technique described here promises realistic forecasts of the entire FUV/EUV solar spectral irradiance spectrum.  相似文献   
2.
Our study of solar cycle irradiance variability in the UV between 200 and 400 nm requires a detailed knowledge of the composition of the solar spectrum in this wavelength range. We compute the synthetic spectrum from 250 to 300 nm and compare it with ATLAS3 and SOLSTICE observations. Synthetic solar spectra for solar minimum and maximum conditions show large variations in broad, strong UV lines. Strong lines of FeI between 260 nm and 264 nm show increases between 0.4× and 3×in their max/min ratio. Our ``broad lines' database shows 167 lines with similar properties between 200 nm and 400 nm. Our results raise issues of the importance of such large variability in narrow bands and the difficulty of detection in measurements with spectral resolutions of 1 nm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号