首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   4篇
  1997年   2篇
  1995年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
HYDRA is an experimental hot plasma investigation for the POLAR spacecraft of the GGS program. A consortium of institutions has designed a suite of particle analyzers that sample the velocity space of electron and ions between 2 keV/q – 35 keV/q in three dimensions, with a routine time resolution of 0.5 s. Routine coverage of velocity space will be accomplished with an angular homogeneity assumption of 16°, appropriate for subsonic plasmas, but with special 1.5° resolution for electrons with energies between 100 eV and 10 keV along and opposed to the local magnetic field. This instrument produces 4.9 kilobits s–1 to the telemetry, consumes on average 14 W and requires 18.7 kg for deployment including its internal shielding. The scientific objectives for the polar magnetosphere fall into four broad categories: (1) those to define the ambient kinetic regimes of ions and electrons; (2) those to elucidate the magnetohydrodynamic responses in these regimes; (3) those to assess the particle populations with high time resolution; and (4) those to determine the global topology of the magnetic field. In thefirst group are issues of identifying the origins of particles at high magnetic latitudes, their energization, the altitude dependence of the forces, including parallel electric fields they have traversed. In thesecond group are the physics of the fluid flows, regimes of current, and plasma depletion zones during quiescent and disturbed magnetic conditions. In thethird group is the exploration of the processes that accompany the rapid time variations known to occur in the auroral zone, cusp and entry layers as they affect the flow of mass, momentum and energy in the auroral region. In thefourth class of objectives are studies in conjunction with the SWE measurements of the Strahl in the solar wind that exploit the small gyroradius of thermal electrons to detect those magnetic field lines that penetrate the auroral region that are directly open to interplanetary space where, for example, the Polar Rain is observed.  相似文献   
2.
The Electron Drift Instrument (EDI) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by use of different electron energies, be determined separately. As a by-product, the magnetic field strength is also measured. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument.  相似文献   
3.
ACTIVE SPACECRAFT POTENTIAL CONTROL   总被引:1,自引:0,他引:1  
Charging of the outer surface or of the entire structure of a spacecraft in orbit can have a severe impact on the scientific output of the instruments. Typical floating potentials for magnetospheric satellites (from +1 to several tens of volts in sunlight) make it practically impossible to measure the cold (several eV) component of the ambient plasma. Effects of spacecraft charging are reduced by an entirely conductive surface of the spacecraft and by active charge neutralisation, which in the case of Cluster only deals with a positive potential. The Cluster spacecraft are instrumented with ion emitters of the liquid-metal ion-source type, which will produce indium ions at 5 to 8 keV energy. The operating principle is field evaporation of indium in the apex field of a needle. The advantages are low power consumption, compactness and high mass efficiency. The ion current will be adjusted in a feedback loop with instruments measuring the spacecraft potential (EFW and PEACE). A stand-alone mode is also foreseen as a back-up. The design and principles of the operation of the active spacecraft potential control instrument (ASPOC) are presented in detail. Flight experience with a similar instrument on the Geotail spacecraft is outlined.  相似文献   
4.
A broad, international, cooperative effort is under way to study and develop quantitative understanding of the fundamental electrodynamic processes in the solar-terrestrial environment. Japan, Europe, Russia, the United States, and other countries are providing spacecraft to be placed in key regions with the aim of utilizing coordinated, multipoint spaceflight measurements, ground-based observations, and theory to study the global energy budget of geospace. The U.S. contribution began in the late 1970's as the OPEN program (Origin of Plasmas in Earth's Neighborhood) and was reconstituted in the 1980's as the Global Geospace Science (GGS) program. The international effort, known in the U. S. as the International Solar Terrestrial Physics program (ISTP), began with the launch of the Japanese GEOTAIL in 1992, and will continue with the U. S. spacecraft WIND and POLAR in 1994–1995, and the European four-spacecraft Cluster fleet and its Solar and Heliospheric Observatory (SOHO) in 1995. Russia will launch its Interball set of four spacecraft in 1995. The Inter-Agency Consultative Group (IACG) is promoting the coordination of the spacecraft observations by means of scientific campaigns aimed at addressing scientific questions that can only be answered by observations from the multiple spacecraft. The Solar Terrestrial Energy Program (STEP) is coordinating the involvement of the broad scientific community and especially the correlative ground observations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号