首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
航空   7篇
航天技术   3篇
  2008年   2篇
  2007年   2篇
  2005年   2篇
  1999年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有10条查询结果,搜索用时 62 毫秒
1
1.
Results of the 2.5–5 micron spectroscopic channel of the IKS instrument on Vega are reported and the data reduction process is described. H2O and CO2 molecules have been detected with production rates of 1030 s−1 and 1.5 1028 s−1 respectively. Emission features between 3.3 and 3.7 microns are tentatively attributed to CH - bearing compounds - CO is marginally detected with a mixing ratio CO/H2O 0.2. OH emission and H2O - ice absorption might also be present in the spectra.  相似文献   
2.
This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.  相似文献   
3.
The IKS infrared spectro-photometer will fly on board the VEGA platforms. It is designed to characterize the size, temperature and emissivity of the Comet Halley nucleus, to identify the major gaseous components of the inner coma and to detect the emission of the cometary grains. This paper presents the “calibration” experiments required to reduce the raw data: (i) absolute wavelength calibration of the filter wheels; (ii) modeling of the internal signal, as a function of the temperature of the different sub-systems; (iii) absolute and spectral responsivities of each of the spectrometric and photometric channels, as a function of the wavelength and position of the source in the field of view. Finally, we shall indicate the expected S/N ratios.  相似文献   
4.
In order to prepare infrared sounding of comet Halley from the flyby VEGA probes, we have computed the synthetic spectrum between 2.5 and 15 μ of a typical comet at a heliocentric distance of ~ 0.8 AU. The present paper is particularly devoted to the contribution from the cometary gases. For a selection of 20 possible parent molecules, the most efficient excitation process is resonant fluorescence by the solar radiation field. The H2O, CO, CO2, CH4, NH3 and H2CO molecules are the best candidates for detection by the IKS infrared spectrometers aboard the VEGA probes. For the water molecule, collisions are too rare to ensure thermal equilibrium in the whole coma ; therefore a limited number of fluorescence lines are expected to be present in the H2O vibrational bands.  相似文献   
5.
In this review we present the main results obtained by the ISO satellite on the abundance and spatial distribution of water vapor in the direction of molecular clouds, evolved stars, galaxies, and in the bodies of our Solar System. We also discuss the modeling of H2O and the difficulties found in the interpretation of the data, the need of collisional rates and the perspectives that future high angular and high spectral resolution observations of H2O with the Herschel Space Observatory will open.  相似文献   
6.
Much of what we know about the atmospheres of the planets and other bodies in the solar system comes from detection of photons over a wide wavelength range, from X-rays to radio waves. In this chapter, we present current information in various categories—measurements of the airglows of the terrestrial planets, the dayglows of the outer planets and satellites, aurora throughout the solar system, observations of cometary spectra, and the emission of X-rays from a variety of planetary bodies.  相似文献   
7.
ISO performed a large variety of observing programmes on comets, asteroids and zodiacal light – covering about 1% of the archived observations – with a surprisingly rewarding scientific return. Outstanding results were related to the exceptionally bright comet Hale–Bopp and to ISO's capability to study in detail the water spectrum in a direct way. But many other results were broadly recognised: Discovery of new molecules in comets, the studies of crystalline silicates, the work on asteroid surface mineralogy, results from thermophysical studies of asteroids, a new determination of the asteroid number density in the main-belt and last but not least, the investigations on the spatial and spectral features of the zodiacal light.  相似文献   
8.
The volatile species released in the coma are an important clue to the composition of the cometary nucleus ices. Their identification and the measurement of their abundances is possible by remote sensing. Considerable progress has been made recently using radio and infrared spectroscopy, especially with the observations of the two exceptional comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp).) 24 molecules likely to be parent molecules outgassed from the nucleus have now been identified. Significant upper limits exist for many other species, and the presence of unidentified lines suggests that further species are to be identified. In addition, isotopic varieties have been observed for hydrogen, carbon, nitrogen and sulphur. We will review these results with a special emphasis on the reliability of the identifications and of the molecular production rate determinations. A critical point is to assess whether a given species is a genuine parent molecule outgassed from nuclear ices, or is a secondary product coming from grains or from gas-phase photochemistry. Ground-based spectral imaging, such as radio interferometry, may help resolving this problem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
9.
MIRO: Microwave Instrument for Rosetta Orbiter   总被引:1,自引:0,他引:1  
The European Space Agency Rosetta Spacecraft, launched on March 2, 2004 toward Comet 67P/Churyumov-Gerasimenko, carries a relatively small and lightweight millimeter-submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument will be used to study the evolution of outgassing water and other molecules from the target comet as a function of heliocentric distance. During flybys of the asteroids (2867) Steins and (21) Lutetia in 2008 and 2010 respectively, the instrument will measure thermal emission and search for water vapor in the vicinity of these asteroids. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients in Comet 67P/Churyumov-Gerasimenko and the asteroids (2867) Steins and (21) Lutetia. A 4096 channel CTS (Chirp Transform Spectrometer) spectrometer having 180 MHz total bandwidth and 44 kHz resolution is, in addition to the continuum channel, connected to the submillimeter receiver. The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species – CO, CH3OH, NH3 and three, oxygen-related isotopologues of water, H2 16O, H2 17O and H2 18O. The basic quantities measured with the MIRO instrument are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This paper provides a short discussion of the scientific objectives of the investigation, and a detailed discussion of the MIRO instrument system.  相似文献   
10.
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号