首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
航空   19篇
  1994年   1篇
  1993年   1篇
  1987年   3篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1967年   1篇
排序方式: 共有19条查询结果,搜索用时 140 毫秒
1.
The performance of a least mean square (LMS) adaptive array in the presence of a pulsed interference signal is examined. It is shown that a pulsed interference signal has two effects. First, it causes the array to modulate the desired signal envelope (but not its phase). Second, it causes the array output signal-to-interferenceplus-noise ratio (SINR) to vary with time. The desired signal modulation is evaluated as a function of signal arrival angles, powers and interference pulse-repetition frequency (PRF) and pulsewidth. It is shown that the signal modulation is small except when the interference arrives close to the desired signal. To evaluate the effect of the time-varying SINR, it is assumed that the array is used in a differential phase-shift keyed (DPSK) communication system. It is shown that the SINR variation causes a noticeable but not disastrous increase in the bit error probability.  相似文献   
2.
The bandwidth of adaptive arrays with tapped delay lines behind the elements is examined. Such processing offers improved bandw over that attainable with quadrature hybrid processing. The performance of a two-element array with four types of processing (equarature hybrids, single delay lines, 3-tap delay lines, and 5-tap delay lines) is compared. It is shown that with half-wavelength element spacing, a quadrature hybrid and single delay-line processor are inadequate at 10-percent bandwidth. A 3-tap processor is adeq however, up to 40-percent bandwidth.  相似文献   
3.
This paper is concerned with the problem of time constants in adaptive arrays. The paper presents a improved form of an adaptive array feedback loop, which has the property that its time constants are fixed. This property is an advantage over the well-known least mean square (LMS) loop, for which time constants depend on received signal power. Fixed time constants are of interest because they simplify dynamic range problems for adaptive arrays in communication and radar systems.  相似文献   
4.
The effect of differential time delay in the feedback loops of an LMS adaptive array is examined. Differential time delay is shown to have two effects on array performance. First, it causes the weights to oscillate during weight transients. Second, it degrades the output signal-to-interference-plus-noise ratio (SINR) from the array. Weight oscillation occurs when the phase shifts in the LMS loop are not matched at the signal carrier frequency. SINR degradation depends on signal bandwidth: the wider the bandwidth, the larger the degradation.  相似文献   
5.
The effect of random errors in the steering vector of an Applebaum adaptive array is examined. Each component of the steering vector is assumed to have a random error component uncorrelated between elements. The array output signal-to-interferenceplus-noise ratio (SINR) is computed as a function of the error variance. It is shown that the array output SINR becomes more sensitive to steering vector errors as more elements are added to the array and as the received desired signal power becomes larger. The variance of the steering vector error that may be tolerated depends on the required desired signal dynamic range. The larger the dynamic range that must be accommodated, the smaller the error variance must be.  相似文献   
6.
It is shown how a uniform linear array of crossed dipoles may be used with the ESPRIT algorithm and spatial smoothing techniques to estimate the arrival directions and polarizations of incoming coherent plane waves. Some examples showing typical performance are presented. One method of smoothing can be used where it is necessary to estimate both the arrival angles and polarizations of signals. Two other methods can be used when only the arrival angles are of interest  相似文献   
7.
Adaptive arrays for use in communication systems require the generation of a so-called reference signal, which is usually derived from the array output. A particular problem associated with this technique, the problem of reference loop phase shift, is discussed. It is shown that phase shift in the reference loop causes the array weights to cycle, and also causes the array to frequency-modulate the signal. In spite of this frequency change, the array maintains a maximum SNR at the output.  相似文献   
8.
The effects of multiplier offset voltages in adaptive arrays are examined. Multiplier offset voltages arise when active circuits are used to implement the error-by-signal multipliers required in an array based on the LMS algorithm. These offset voltages are known from experimental work to have a strong effect on array performance. It is first shown how multiplier offset voltages may be included in the differential equations for the array weights. Then their effect on weight behavior is studied. It is found that the offset voltages affect the final values of the weights, but not the time constants. Furthermore, the effect they have is influenced by the amount of element noise in the array. An adequate amount of noise is necessary to minimize weight errors due to offset voltages. An example is treated to show the effect of offset voltages on the final array weights and the output signal-to-noise ratio (SNR). With offset voltages present, it is found that there is a maximum SNR that can be obtained from the array. A specific input SNR is required to obtain this maximum output SNR. Finally, it is shown that a finite operating range for the weights places a further restriction on the acceptable values of offset voltages and noise.  相似文献   
9.
The behavior of a LMS (least mean square) adaptive array with modulated interference is described. An interference signal with sinusoidal, double-sideband, suppressed-carrier modulation is assumed. It is shown that such interference causes the array to modulate the desired signal envelope but not its phase. The amount of the desired signal modulation is determined as a function of signal arrival angles and powers and the modulation frequency of the interference. Such interference also causes the array output signal-to-interference-plus-noise ratio (SINR) to vary with time. However, it is shown that when the desired signal is a digital communication signal, the averaged bit error probability is essentially the same as for continuous wave (CW) interference.  相似文献   
10.
The performance of a steered beam adaptive array as a function of the beam pointing error is examined. The purpose is to determine how close the steered beam has to be to the actual desired signal arrival angle for good performance. It is shown that the beam pointing error that can be tolerated is essentially a question of dynamic range. The greater the desired signal dynamic range that must be accommodated by the array, the more accurate the beam pointing angle must be.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号