首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   7篇
  2002年   1篇
  1990年   1篇
  1981年   1篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有7条查询结果,搜索用时 203 毫秒
1
1.
A two-pole filter is proposed as a detector for a scanning radar. The optimum values of the filter coefficients are found and are approximated by a simple expression. The optimum two-pole filter requires a 0.15-dB increase in signal-to-noise ratio in order to provide the same detection capability as the optimum detector, and yields azimuth estimates whose standard deviation are within 15 percent of the Cramér-Rao lower bound. The estimator is simple to implement, avoiding the storage requirements of the moving window detector and the bias complications of the feedback integrator.  相似文献   
2.
The Cramer-Rao bound for an unbiased estimate of the elevation angle of a target in the presence of multipath is calculated for the symmetric (target and image symmetric about the elevation symmetry plane of antenna) and nonsymmetric cases for an antenna consisting of 21 elements. These bounds are compared to the maximum likelihood estimates and it is found that the rms error of the maximum likelihood estimate (which has a bias) is below the Cramer-Rao bound for unbiased estimates.  相似文献   
3.
A technique which uses maximum-likelihood estimates (MLEs) of target Doppler and target amplitude is developed for rejecting clutter residues. Multiple estimates are made and consistency checks are applied to the estimates. Simulation results indicate that for large clutter-to-noise ratios (C/N⩾55 dB) the probability of false alarm from clutter residues is reduced from 1.0 to below 0.01  相似文献   
4.
Twenty-first century littoral and open-sea missions present US Navy (USN) shipboard-radar systems with the challenge of detecting small targets in severe clutter and against multiple sources of interference. In Fiscal Year 2000 (FY00), the Office of Naval Research (ONR) sponsored a program to develop an active array radar that includes a digital beamforming (DBF) architecture. The DBF radar system has the potential for improved time-energy management, improved signal-to-clutter (S/C) ratios, improved reliability and reduced life-cycle costs. This paper summarizes the latest developments of the program during FY00  相似文献   
5.
The maximum likelihood estimates of the elevation angles of two closely spaced targets within the beamwidth is considered. For an array divided into three subapertures, a simple, closed form solution is found whose accuracy compares favorably to the maximum likelihood estimate which uses all the individual elements. Simulation results are presented for the case of a radar target located over a smooth reflecting surface.  相似文献   
6.
The modified generalized sign test processor is a nonparametric, adaptive detector for 2-D search radars. The detector ranks a sample under test with its neighboring samples and integrates (on a pulse-to-pulse basis) the ranks with a two-pole filter. A target is declared when the integrated output exceeds two thresholds. The first threshold is fixed and yields a 10-6 probability of false alarm when the neighboring samples are independent and identically distributed. The second threshold is adaptive and maintains a low false-alarm rate when the integrated neighboring samples are correlated and when there are nonhomogeneities, such as extraneous targets, in the neighboring cells. Using Monte Carlo techniques, probability of false-alarm results, probability of detection curves, and angular accuracy curves have been generated for this detector. The detector was built and PPI photographs are used to indicate the detector's performance when the radar is operated over land clutter.  相似文献   
7.
The probability density of the maximum likelihood estimate of elevation angle of a radar target in the presence of multipath is calculated. For detectable signals that have low signal-to-noise ratios, the density is a mixture of a Gaussian density and a delta function at the horizon.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号