首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   3篇
  2009年   1篇
  2007年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Helicopters exhibit a very particular Doppler radar signature caused by the movement of rotor blades. This signature can easily be derived using a short-time approximation: the blades are assumed to be static during each pulse. In wideband linear frequency modulated (LFM) radars, however, this assumption cannot be made. The work presented here describes the echo of rotary blades illuminated by LFM radars without the short-time assumption and provides useful information for detection and recognition purposes.  相似文献   
2.
One of the best known weakness of radar sensors in defense and security applications is the necessity to radiate a signal, which can be detected by the target, so being possible (easy in fact) that the target is alerted about the presence of a radar before the radar is alerted about the presence of a target. In this context, Low Probability of Interception (LPI) Radars try to use signals that are difficult to intercept and/or identify. Spread spectrum signals are strong candidates for this application, and systems using special frequency or polyphase modulation schemes are being exploited. Frequency hopping, however, has not received much attention. The typical LPI radar at this moment of the technology is a CW-LFM radar. The simplicity of the technology is its best point. Polyphase codes, on the other hand have the inherent advantage of high instantaneous bandwidth regardless of observation time. But the complexity of the hardware is also higher. FH signals have traditionally been considered of lower performance but higher complexity, due to the difficulties to compensate the individual dopplers for the individual range cells in the receiver. One important point is that an FH radar must be clearly distinguished from an agile frequency radar. In the latter, a pulsed signal is transmitted using different frequencies from pulse to pulse. In an FH radar the frequency changes must be during the pulse. In fact, in an LPI FH radar, a CW frequency hopped signal is used. A radar system concept is proposed in which it shows how these problems can be overcome in a tracking application. Also, the signal format is analyzed under the scope of future decade digital interceptors, showing that, in fact, this kind of signal exhibits improvement in some performances and requires a hardware that is only slightly more complex than that needed for CW-LFM systems  相似文献   
3.
Robust SVA method for every sampling rate condition   总被引:2,自引:0,他引:2  
Linear apodization, or data weighting, is the traditional procedure to improve sidelobe levels in a finite sampled signal at the expense of resolution. New apodization methods, such as spatially variant apodization (SVA), apply nonlinear filtering to the signal in order to completely remove sidelobes without any loss of resolution. However, the results are strongly influenced by signal sampling rate. Some variations which improve results have been previously published, but sidelobe cancellation gets worse since sampling frequency is not settled at Nyquist (or a multiple). This paper presents a new and efficient technique based on SVA that drastically reduces sidelobe levels for every sampling rate condition. The algorithm is, essentially, a parameter optimization of a variant filter for each pixel of the image. A one-dimensional case and a two-dimensional generalization are presented, as well as some applications to target detection capability in a synthetic aperture radar (SAR) system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号