首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   4篇
  2020年   1篇
  2010年   2篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 203 毫秒
1
1.
2.
The SNC (Shergotty-Nakhla-Chassigny) meteorites have recorded interactions between martian crustal fluids and the parent igneous rocks. The resultant secondary minerals — which comprise up to 1 vol.% of the meteorites — provide information about the timing and nature of hydrous activity and atmospheric processes on Mars. We suggest that the most plausible models for secondary mineral formation involve the evaporation of low temperature (25 – 150 °C) brines. This is consistent with the simple mineralogy of these assemblages — Fe-Mg-Ca carbonates, anhydrite, gypsum, halite, clays — and the chemical fractionation of Ca-to Mg-rich carbonate in ALH84001 "rosettes". Longer-lived, and higher temperature, hydrothermal systems would have caused more silicate alteration than is seen and probably more complex mineral assemblages. Experimental and phase equilibria data on carbonate compositions similar to those present in the SNCs imply low temperatures of formation with cooling taking place over a short period of time (e.g. days). The ALH84001 carbonate also probably shows the effects of partial vapourisation and dehydration related to an impact event post-dating the initial precipitation. This shock event may have led to the formation of sulphide and some magnetite in the Fe-rich outer parts of the rosettes.Radiometric dating (K-Ar, Rb-Sr) of the secondary mineral assemblages in one of the nakhlites (Lafayette) suggests that they formed between 0 and 670 Myr, and certainly long after the crystallisation of the host igneous rocks. Crystallisation of ALH84001 carbonate took place 0.5 Gyr after the parent rock. These age ranges and the other research on these assemblages suggest that environmental conditions conducive to near-surface liquid water have been present on Mars periodically over the last 1 Gyr. This fluid activity cannot have been continuous over geological time because in that case much more silicate alteration would have taken place in the meteorite parent rocks and the soluble salts would probably not have been preserved.The secondary minerals could have been precipitated from brines with seawater-like composition, high bicarbonate contents and a weakly acidic nature. The co-existence of siderite (Fe-carbonate) and clays in the nakhlites suggests that the pCO2 level in equilibrium with the parent brine may have been 50 mbar or more. The brines could have originated as flood waters which percolated through the top few hundred meters of the crust, releasing cations from the surrounding parent rocks. The high sulphur and chlorine concentrations of the martian soil have most likely resulted from aeolian redistribution of such aqueously-deposited salts and from reaction of the martian surface with volcanic acid volatiles.The volume of carbonates in meteorites provides a minimum crustal abundance and is equivalent to 50–250 mbar of CO2 being trapped in the uppermost 200–1000 m of the martian crust. Large fractionations in 18O between igneous silicate in the meteorites and the secondary minerals (30) require formation of the latter below temperatures at which silicate-carbonate equilibration could have taken place (400°C) and have been taken to suggest low temperatures (e.g. 150°C) of precipitation from a hydrous fluid.  相似文献   
3.

The atmospheres of the four giant planets of our Solar System share a common and well-observed characteristic: they each display patterns of planetary banding, with regions of different temperatures, composition, aerosol properties and dynamics separated by strong meridional and vertical gradients in the zonal (i.e., east-west) winds. Remote sensing observations, from both visiting spacecraft and Earth-based astronomical facilities, have revealed the significant variation in environmental conditions from one band to the next. On Jupiter, the reflective white bands of low temperatures, elevated aerosol opacities, and enhancements of quasi-conserved chemical tracers are referred to as ‘zones.’ Conversely, the darker bands of warmer temperatures, depleted aerosols, and reductions of chemical tracers are known as ‘belts.’ On Saturn, we define cyclonic belts and anticyclonic zones via their temperature and wind characteristics, although their relation to Saturn’s albedo is not as clear as on Jupiter. On distant Uranus and Neptune, the exact relationships between the banded albedo contrasts and the environmental properties is a topic of active study. This review is an attempt to reconcile the observed properties of belts and zones with (i) the meridional overturning inferred from the convergence of eddy angular momentum into the eastward zonal jets at the cloud level on Jupiter and Saturn and the prevalence of moist convective activity in belts; and (ii) the opposing meridional motions inferred from the upper tropospheric temperature structure, which implies decay and dissipation of the zonal jets with altitude above the clouds. These two scenarios suggest meridional circulations in opposing directions, the former suggesting upwelling in belts, the latter suggesting upwelling in zones. Numerical simulations successfully reproduce the former, whereas there is a wealth of observational evidence in support of the latter. This presents an unresolved paradox for our current understanding of the banded structure of giant planet atmospheres, that could be addressed via a multi-tiered vertical structure of “stacked circulation cells,” with a natural transition from zonal jet pumping to dissipation as we move from the convectively-unstable mid-troposphere into the stably-stratified upper troposphere.

  相似文献   
4.
Previous studies have suggested that the asymmetric vortex wake which develops behind an axisymmetric body at angle of attack is the result of the amplification of a disturbance introduced at the tip of the body. The potential-flow vortex wake of a circular cylinder in cross-flow is examined and similarities to the wake of the axisymmetric body at incidence are described. The implications of these similarities for the suggested model are discussed, and an argument is made that the vortex trajectories are fixed at a given angle of attack and shifted upstream or downstream by the initial disturbance. The need for further detailed experimental studies of the asymmetric vortex wake development is noted.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号