首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   2篇
航天技术   1篇
航天   2篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 359 毫秒
1
1.
The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to ?100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.  相似文献   
2.
This paper argues the need now to consider defining a vertical or spatial boundary between air space and outer space, which in turn effectively means defining the extent of air law and space law. Technology changes in aircraft, spacecraft, positioning systems and remote sensing, combined with the growth in the number of spacefaring nations, make the situation different from the early days of the space era when it was assumed that a boundary would be defined at a future indeterminate date. This article describes the background to the debates and the growing pressures of the questions of sovereignty concerning air and space law, and argues the case for a vertical or spatial boundary rather than a functional one.  相似文献   
3.
Four layers, S1-S4, containing sand-sized spherical particles formed as a result of large meteorite impacts, occur in 3.47-3.24 Ga rocks of the Barberton Greenstone Belt, South Africa. Ir levels in S3 and S4 locally equal or exceed chondritic values but in other sections are at or only slightly above background. Most spherules are inferred to have formed by condensation of impact-produced rock vapor clouds, although some may represent ballistically ejected liquid droplets. Extreme Ir abundances and heterogeneity may reflect element fractionation during spherule formation, hydraulic fractionation during deposition, and/or diagenetic and metasomatic processes. Deposition of S1, S2, and S3 was widely influenced by waves and/or currents interpreted to represent impact-generated tsunamis, and S1 and S2 show multiple graded layers indicating the passage of two or more wave trains. These tsunamis may have promoted mixing within a globally stratified ocean, enriching surface waters in nutrients for biological communities. S2 and S3 mark the transition from the 300-million-year-long Onverwacht stage of predominantly basaltic and komatiitic volcanism to the late orogenic stage of greenstone belt evolution, suggesting that regional and possibly global tectonic reorganization resulted from these large impacts. These beds provide the oldest known direct record of terrestrial impacts and an opportunity to explore their influence on early life, crust, ocean, and atmosphere. The apparent presence of impact clusters at 3.26-3.24 Ga and approximately 2.65-2.5 Ga suggests either spikes in impact rates during the Archean or that the entire Archean was characterized by terrestrial impact rates above those currently estimated from the lunar cratering record.  相似文献   
4.
In the scope of the development of an improved methodology for the computation of the wet tropospheric correction for coastal altimetry, based on the use of tropospheric delays derived from GNSS (Global Navigation Satellite Systems), various studies have been conducted aiming to improve the estimation, at global scale, of GNSS-derived tropospheric delays.  相似文献   
5.
The secular variation of the core field is generally characterized by smooth variations, sometimes interrupted by abrupt changes, named geomagnetic jerks. The origin of these events, observed and investigated for over three decades, is still not fully understood. Many fundamental features of geomagnetic jerks have been the subject of debate, including their origin internal or external to the Earth, their occurrence dates, their duration and their global or regional character. Specific tools have been developed to detect them in geomagnetic field or secular variation time series. Recently, their investigation has been advanced by the availability of a decade of high-quality satellite measurements. Moreover, advances in the modelling of the core field and its variations have brought new perspectives on the fluid motion at the top of the core, and opened new avenues in our search for the origin of geomagnetic jerks. Correlations have been proposed between geomagnetic jerks and some other geophysical observables, indicating the substantial interest in this topic in our scientific community. This paper summarizes the recent advances in our understanding and interpretation of geomagnetic jerks.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号