首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
航空   20篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1999年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有20条查询结果,搜索用时 859 毫秒
1.
Energy coupling between the solar wind and the magnetosphere   总被引:13,自引:0,他引:13  
This paper describes in detail how we are led to the first approximation expression for the solar wind-magnetosphere energy coupling function , which correlates well with the total energy consumption rate U T of the magnetosphere. It is shown that is the primary factor which controls the time development of magnetospheric substorms and storms. The finding of this particular expression indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere constitute a dynamo. In fact, the power P generated by the dynamo can be identified as by using a dimensional analysis. Furthermore, the finding of indicates that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. Therefore, the finding of and its implications have considerably advanced and improved our understanding of magnetospheric processes. The finding of has also led us to a few specific future problems in understanding relationships between solar activity and magnetospheric disturbances, such as a study of distortion of the solar current disk and the accompanying changes of . It is also pointed out that one of the first tasks in the energy coupling study is an improvement of the total energy consumption rate U T of the magnetosphere. Specific steps to be taken in this study are suggested.  相似文献   
2.
3.
4.
Geomagnetic and auroral storms provide a great deal of detailed information on the interaction between the solar plasma flows and the magnetosphere. Vast numbers of observations have been accumulated, and many theories have been developed to explain them. However, many of the most vital features of the interaction remain unsolved. The purpose of this paper is to provide the background for future work by summarizing fundamental morphological data and by reviewing critically the proposed theories.The paper consists of four sections. In the first section, the structure of the solar plasma flows and the magnetosphere are briefly discussed. Effects of the direct impact of the plasma flows on the magnetosphere are described in Section 2. Both Sections 3 and 4 are devoted to the discussion of the major phase of geomagnetic storms, namely the formation of the asymmetric ring current belt and the development of the auroral and polar magnetic substorms, respectively.Research supported in part by grants from the National Aeronautics and Space Administration to the University of Alaska (NsG 201-62) and to the University of Iowa (NsG 233-62).  相似文献   
5.
Magnetic field data from a meridian chain of observatories and the recently developed computer codes constitute a powerful tool in studying substorm current systems in the polar region. In this paper, we summarize some of the results obtained from the IMS Alaska meridian chain of observatories. The basic data are the average daily magnetic field variations for 50 successive days (March 9–April 27, 28) which represent a moderately disturbed period. With the aid of the two computer codes, we obtained the distribution of the following quantities in the polar ionosphere in invariant-MLT coordinates: (1) the total ionospheric current; (2) the Pedersen current; (3) the Hall current; (4) the field-aligned currents; (5) the Pedersen-associated field-aligned currents; (6) the Hall-associated field-aligned currents; (7) the electric potential; (8) the Joule heat production rate; (9) the auroral particle energy injection rate; (10) the total energy dissipation rate. All these quantities are related to each other self-consistently at every point under the initial assumptions used in the computation. By using a model of the magnetosphere, the following quantities in the polar ionosphere are projected onto the equatorial plane and the Y — Z plane at X = -20 R E: (11) the Pedersen current counterpart; (12) the Hall current counterpart; (13) the electric potential; (14) the Pedersen-associated field-aligned currents; (15) the Hall-associated field-aligned currents. These distribution patterns serve as an important basis for studying the generation mechanisms of substorm current systems and the magnetosphere-ionosphere coupling process.  相似文献   
6.
It is shown that solar flares and magnetospheric substorms must primarily be caused by a dynamo process, rather than magnetic reconnection – a spontaneous, explosive annihilation of magnetic energy stored prior to the onset. Magnetic energy in the vicinity of solar flares and in the magnetotail shows often an increase at their onset, not a decrease. It is unfortunate that many observed features of solar flares and substorms have tacitly been ascribed to unproven (3-D) characteristics of the neutral line for a long time. In the future, it is necessary to study carefully their driving process and examine how the driven magnetic field system evolves, leading to solar flares and substorms.  相似文献   
7.
It is demonstrated that some of the controversial issues in substorm research can be integrated/synthesized to reach a higher level of understanding substorm processes. Several examples are presented, although they may not be the final answers.  相似文献   
8.
A new auroral pattern, which indicates major auroral characteristics in all local time sectors, is presented. It has emerged as a result of extensive study of DMSP-8531 and -10533 auroral photographs. The paper presents also a brief summary of recent studies on the role of the north-south component of the interplanetary magnetic field on large-scale auroral dynamics and on the relationship between substorm energy and the size of the oval.  相似文献   
9.
Through an intensive study of the magnetospheres of the Earth, Mercury, and Jupiter, we have begun to understand how a magnetized celestial body interacts with a magnetized plasma flow. Some of the important findings are:Some of these findings may have significant implications in interpreting a variety of astrophysical processes associated with the magnetosphere of magnetic stars, pulsars and head-tail galaxies and also with transient processes, such as solar flares and flarings of particular types of variable stars, etc.  相似文献   
10.
The concept of geomagnetic storm-producing solar plasma flows has evolved and advanced considerably over the last 100 years or so. This particular field of study began in an effort to understand geomagnetic disturbances and the aurora. The purpose of this paper is try to follow the ways in which early concepts evolved to later ones, not to review each concept in detail. It is fascinating to see a step-by-step buildup of these concepts, from the earliest idea of flow of solar electrons to coronal mass ejections (CMEs). The time line, though tentative, of the studies of geomagnetic storm-producing plasma flows is presented. The author hopes that this paper will serve young researchers in particular to consider how they plan to advance further this scientific field. There is still much uncertainty about geomagnetic storm-producing solar plasma flows. Some of the major questions are listed from the point of view of a geophysicist in the summary sections by grouping them in terms of the quiet-time solar wind, solar streams from corona holes and CMEs associated with solar flares.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号