首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
航空   4篇
航天   2篇
  2023年   2篇
  2020年   1篇
  2015年   2篇
  2014年   1篇
排序方式: 共有6条查询结果,搜索用时 234 毫秒
1
1.
许啸  王园丁  张军 《航空动力学报》2020,35(12):2489-2504
针对微尺度喷流在航天器运动状态切换时出现的非恒定增压变化,采用直接模拟蒙特卡洛(DSMC)方法对阶跃式增压和线性式增压两种模式下的微尺度拉瓦尔喷管流场进行了模拟,并对其变化过程中的流动特性进行了对比分析。结果显示:阶跃式增压会导致流动特性出现较大幅值的峰谷式波动,而线性式增压下的流动特性则呈现出线性变化的特点;黏性力对微尺度喷流的非恒定增压变化产生了重要的黏滞作用,在喉部扩张段至出口的流场中尤为明显;在设定的条件下,阶跃式增压过程中喷流产生的总冲量较线性式增压高59.5%,质量流量高74.7%,单位工质提供的冲量低约8.6%,波动性也高于线性式模型,阶跃式增压适用于系统需要较大推力改变运动状态且推进剂充足的情况,而线性式增压在系统精确微调或需要推进剂产生更高效能时具有明显的优势。  相似文献   
2.
基于移动最小二乘无网格方法,耦合RNG(Re-Normalisation Group)k-ε湍流模型求解雷诺平均Navier-Stokes方程。采用AUSM(Advection Upstream Splitting Method)+-up迎风格式求解数值通量,应用在高度各向异性点云结构中取得良好结果的点云重构技术结合移动最小二乘法拟合空间导数,并用三阶SSP(Strong Stability Preserving)型Runge-Kutta显式时间推进格式求解离散后的控制方程。在此基础之上,实现了对NACA0012、RAE2822翼型亚、跨声速黏性绕流的数值模拟,给出了翼型表面压力系数分布曲线、不同位置处的平均速度剖面、马赫数等值线等计算结果,并与实验值及相关文献数值模拟结果进行比较,结果吻合较好。表明所发展的结合点云重构技术的无网格方法耦合RNGk-ε湍流模型能够成功模拟翼型亚、跨声速黏性绕流,验证了所提算法的有效性,并拓展了无网格方法求解湍流流动的途径。  相似文献   
3.
 基于移动最小二乘无网格方法,耦合RNG (Re-Normalisation Group) k-ε湍流模型求解雷诺平均Navier-Stokes方程。采用AUSM (Advection Upstream Splitting Method)+-up迎风格式求解数值通量,应用在高度各向异性点云结构中取得良好结果的点云重构技术结合移动最小二乘法拟合空间导数,并用三阶SSP (Strong Stability Preserving)型Runge-Kutta显式时间推进格式求解离散后的控制方程。在此基础之上,实现了对NACA0012、RAE2822翼型亚、跨声速黏性绕流的数值模拟,给出了翼型表面压力系数分布曲线、不同位置处的平均速度剖面、马赫数等值线等计算结果,并与实验值及相关文献数值模拟结果进行比较,结果吻合较好。表明所发展的结合点云重构技术的无网格方法耦合RNG k-ε湍流模型能够成功模拟翼型亚、跨声速黏性绕流,验证了所提算法的有效性,并拓展了无网格方法求解湍流流动的途径。  相似文献   
4.
基于在高度各向异性点云结构中取得良好结果的点云重构技术,采用移动最小二乘无网格法解耦计算了k-ω型湍流模型方程和雷诺平均N-S方程(RANS),实现了对湍流流动的数值模拟。通过对NACA0012翼型、RAE2822翼型的绕流以及后向台阶大分离流动的数值模拟,比较分析了k-ωSST(Shear Stress Transport)和k-ωTNT(Turbulent/Non-Turbulent)两种模型的湍流预测能力。结果表明:对弱逆压梯度情况下的湍流,两者具有相当的预测能力;而k-ωSST较k-ωTNT具有更好的激波捕捉能力。对于大分离流动,两种模型较实验数据均存在一定差异,但总体趋势吻合良好。  相似文献   
5.
为探究口环间隙对离心泵性能的影响,以双级低比转速高速离心泵为研究对象,测量了原型及减小口环间隙改进型的水力性能,对比了两种方案的测试结果,结合试验数据和计算分析了口环间隙对离心泵泄漏损耗及摩擦损耗的影响。结果表明:减小口环间隙能有效提高离心泵的扬程及效率,改进方案的泵效率提升约5%;在设计转速测量工况范围内,随着流量的增大,原型方案的扬程系数逐渐下降,小口环间隙方案的扬程系数变化较小,扬程系数下降使得计算的泄漏损耗占比变化更加显著;尽管减小口环间隙会增加摩擦损耗,但考虑泄漏损耗的影响时,确保运行安全的情况下减小口环间隙是提高泵性能的有效途径。  相似文献   
6.
氦氙气体的组分保持是氦氙布雷顿能量转换系统长期稳定运行的基础,而无论是工质气体的泄漏还是充填量的调节都有可能导致系统中的氦氙气体组分发生变化,进而影响系统运行状态。通过对氦氙布雷顿系统的动态仿真计算,得到了气体组分发生变化时系统运行的差异。当气体组分发生变化时,系统共同工作线将发生偏移,尤其是气体摩尔质量变小时,共同工作线向喘振线偏移;并且在到达满功率输出时,压气机喘振裕度变小,且需要更高的涡轮入口温度;同时会导致回热器热侧温度入口提高,不利于系统的稳定运行。基于系统仿真结果提出了在额定转速下以负荷率、流量为变量的氦氙气体组分计算方法,为实现氦氙布雷顿循环工质组分变化的监控和调节提出了新思路。该方法中,流量的精确测量是提高组分分析精度的重要保障。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号