首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   751篇
  免费   181篇
  国内免费   372篇
航空   1067篇
航天技术   93篇
综合类   119篇
航天   25篇
  2024年   1篇
  2023年   11篇
  2022年   23篇
  2021年   59篇
  2020年   32篇
  2019年   30篇
  2018年   30篇
  2017年   57篇
  2016年   42篇
  2015年   31篇
  2014年   60篇
  2013年   48篇
  2012年   55篇
  2011年   64篇
  2010年   37篇
  2009年   62篇
  2008年   63篇
  2007年   50篇
  2006年   51篇
  2005年   44篇
  2004年   34篇
  2003年   46篇
  2002年   37篇
  2001年   33篇
  2000年   25篇
  1999年   19篇
  1998年   30篇
  1997年   23篇
  1996年   24篇
  1995年   19篇
  1994年   39篇
  1993年   23篇
  1992年   22篇
  1991年   32篇
  1990年   20篇
  1989年   13篇
  1988年   14篇
  1987年   1篇
排序方式: 共有1304条查询结果,搜索用时 31 毫秒
1.
马战奇  孙秀文  王玲奇 《航空学报》2021,42(5):524217-524217
以高分子材料自润滑衬套为研究对象,其摩擦阻尼为旋翼摆振铰提供减摆阻尼,在直升机飞行时,摆振铰作周期摆振运动,产生大量的热,引起衬套温度升高,易造成摆振自润滑衬套阻尼值剧烈变化。通过建立旋翼支臂摆振铰自润滑衬套摩擦生热模型,计算了摆振铰摩擦总热流量,按摩擦副接触面最高温度相等假设计算热流量分配。对传热过程应用有限元稳态热进行求解,获得了直升机旋翼运转时摆振铰摩擦副的温度分布,再进行自润滑衬套疲劳耐久性试验装置水冷散热等同性分析,最终确定了试验装置控制温度参数,为旋翼摆振铰自润滑衬套疲劳耐久性考核试验设计和验证提供参数。  相似文献   
2.
在定向炉中分别采用籽晶法制备了[001]、[011]和[111]3种不同取向的第四代单晶高温合金DD15,在800℃研究了不同取向的高周疲劳性能,分析了合金不同取向的显微组织、疲劳断口形貌和疲劳断裂组织。结果表明:在凝固方向横截面上不同取向合金的铸态枝晶和热处理γ′相组织明显不同。合金800℃的高周疲劳性能存在各向异性,疲劳极限按[111]、[001]、[011]取向的顺序降低。不同取向合金的高周疲劳都是沿平面断裂,断裂平面与试样中心应力轴线的角度不同,角度按[011]、[001]、[111]取向的顺序逐渐减小。不同取向高周疲劳断口特征基本相同,可见疲劳源区、疲劳扩展区和瞬断区。疲劳裂纹起源于试样表面或亚表面并沿{111}平面扩展。扩展区上可见河流状花样和疲劳条带。瞬断区可见撕裂棱和解理台阶特征,其断裂机制都为类解理断裂。由于试验温度较低,不同取向疲劳断裂后的γ′相仍保持立方形状。  相似文献   
3.
    
蒙特卡罗方法可以准确评估复杂机械系统疲劳共因失效概率,但效率偏低,因此提出系统PSN曲线的概念和基于此概念的系统可靠度蒙特卡罗评估方法。在给定的恒幅载荷下,基于同一零件的疲劳寿命在不同应力水平下的概率分位点具有一致性的原则,对系统中零件PSN曲线进行随机抽取;根据线性累积损伤法则和相应的系统可靠度模型,得到齿轮传动的恒幅载荷下的疲劳寿命分布,拟合恒幅载荷与寿命分布之间的关系得到系统PSN曲线。将系统视为一个零件,完成"零件"-"系统"-"零件"的寿命分析过程。通过损伤等效原则,将随机载荷下的复杂串联系统可靠度评估问题转化为恒幅载荷下零件的可靠度评估问题。  相似文献   
4.
游令非  张建国  周霜  杜小松 《航空学报》2019,40(12):223228-223228
针对目前的航空发动机限寿件(ELLP)疲劳可靠性分析中的小失效概率事件以及其极限状态函数具有较强非线性的特点,提出了一种具有自更新机制的半径外自适应重要抽样(AUMCROAIS)疲劳可靠性分析方法。该方法首先利用蒙特卡罗自适应重要抽样(MCAIS)快速逼近真实设计验算点(MPP)附近,随后以近似设计验算点为中心进行极坐标抽样,并依次构造主动学习函数,对近极限状态函数和抽样半径进行最优选取,从而实现最优抽样半径的更新,通过不断的更新确定出最优抽样半径,加速失效概率计算的收敛。本方法提高了设计验算点的收敛速度同时保证了计算精度,解决了小失效概率事件以及强非线性极限状态函数可靠度计算难题,最后以某型发动机压气机轮盘为对象应用本方法,并与传统的蒙特卡罗仿真(MCS)方法、蒙特卡罗半径外自适应重要抽样法(MCROAIS)和一阶可靠性方法(FORM)进行了对比,验证了本方法的高效率、鲁棒性和仿真精度。  相似文献   
5.
起落架结构的寿命监控对保障其安全性与经济性具有重要作用,但由于地面谱复杂的高低载荷非线性交互作用,难以准确计算单机谱的损伤。以当量损伤计算方法为基础,通过对寿命监控中的单机谱进行初步筛选,判别单机谱与基准谱的相似程度,进而分析损伤计算方法的适用性。提出了一种基于时间序列分析中的动态时间弯曲方法的起落架载荷谱相似性判别方法,进行了基准谱与4个单机谱下的疲劳实验,通过分析损伤计算误差与起落架载荷谱相似距离的关系,验证所提载荷谱相似性判别方法的合理性。   相似文献   
6.
对17种不同带宽系数的限带白噪声随机过程进行了雨流循环计数统计,提出了一个限带白噪声随机过程的雨流幅值概率密度函数(Probability density function,PDF)模型。该模型是Rayleigh分布和Weibull分布的线性组合,其中待定系数均为随机过程谱参数的函数。采用该模型对这17种随机过程的雨流幅值概率密度函数进行了公式拟合,探究了模型中待定参数与随机过程谱参数之间的关系,确定了模型表达式。对照随机过程的雨流计数统计结果,将该模型与Dirlik模型的预测精度进行了比较,结果表明该模型的预测效果优于Dirlik模型。  相似文献   
7.
典型近α型钛合金Ti6242合金制备盘锻件的综合力学性能与其棒材原始微观组织特征密切相关。本研究选取具有明显微观组织特征差别的3种Ti6242钛合金棒材为研究对象,定量化评估不同Ti6242钛合金棒材锻造态、固溶态和固溶+时效态的微观组织差别和演变规律,并讨论棒材微观组织差别和演变对综合力学性能的影响。研究结果显示具有明显差别的不同棒材微观组织在经历相同的固溶和时效处理后,其初生α相体积分数差别趋于相近,而初生α相的尺寸分布和形状分布等微观组织特征仍保留差别;力学性能结果显示室温拉伸力学性能趋于近似,而低周疲劳和保载疲劳力学性能对微观组织特征较为敏感。对比不同特征组织和力学性能分析结果,具有细小非等轴状且没有明显取向集中分布初生α相的棒材原始组织有助于获得更好的疲劳性能。  相似文献   
8.
高志刚  何宇廷  马斌麟  张天宇 《航空学报》2021,42(5):524375-524375
当前航空工业的发展对于超高强铝合金材料的需求十分迫切,实现该材料的国产化并达到良好的质量效果至关重要。为了对中国航空工业中常用的7XXX新型铝合金材料的原始疲劳质量(IFQ)进行评估,选取裂纹萌生时间(TTCI)和当量初始缺陷尺寸(EIFS)作为对比参量,分别对中国飞机机翼用7XXX紧固孔试件和俄系BXXX紧固孔试件开展了低、中、高3种应力水平下的疲劳试验,通过对比分析得到了两种试件在不同应力水平下的TTCI趋于一致,最大仅相差3.71%;得到了每个试件的EIFS,应用疲劳统计学方法验证了两种试件材料各自的EIFS值无显著性差异;提出了一种不同超越概率下的结构细节当量初始缺陷模型,直接有效地对飞机结构细节的质量风险进行了评估;建立并对比分析了两种试件结构细节的通用EIFS分布,结果均小于中国军用手册规定的0.125 mm,且在超越概率为5%时,7XXX材料的通用EIFS值要小于BXXX材料的通用EIFS值。  相似文献   
9.
随着大功率发光二极管(LED)在照明领域的普及与广泛应用,可靠性逐渐成为研究的重点。大功率LED封装器件中金引线疲劳断裂失效一直是制约其可靠性的重要因素。通过针对大功率LED封装器件中的金引线力学仿真与功率循环试验相结合的方法,首先确定循环电载荷条件下该型LED的主要失效原因为金引线疲劳断裂,其次提出基于电流加速模型的加速因子提取方法和基于应变幅值的Coffin-Manson解析寿命预测方法,最终完成对LED金引线疲劳断裂寿命的预测和试验验证。研究结果表明:所提方法具有较高的寿命预测精度,可以满足大功率LED封装器件可靠性快速、准确评估的要求。   相似文献   
10.
针对弹片的热机械疲劳(TMF)试验要求,采用机械设计技术、机电技术、冷却技术、计算机技术和数据采集技术,提出了压力载荷和热载荷的加载方法,建立了2种载荷5个试验件的并联试验控制系统,并设计了弹片热机械疲劳试验器。试验结果表明:该系统能够同时模拟服役环境下弹片的压力载荷和热载荷。利用该试验系统进行了弹片的热机械疲劳试验,试验结果再现了弹片在服役状态下的失效模式。试验系统具有良好的重复度、较高的加载频率和加载精度。压力载荷最大相对误差为2.4%,绝对误差小于0.5N。温度载荷最大相对误差为3.55%,最大绝对误差为3.89℃。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号