全文获取类型
收费全文 | 153篇 |
免费 | 72篇 |
国内免费 | 3篇 |
专业分类
航空 | 214篇 |
航天技术 | 1篇 |
综合类 | 10篇 |
航天 | 3篇 |
出版年
2024年 | 11篇 |
2023年 | 9篇 |
2022年 | 9篇 |
2021年 | 7篇 |
2020年 | 11篇 |
2019年 | 5篇 |
2018年 | 5篇 |
2017年 | 16篇 |
2016年 | 9篇 |
2015年 | 9篇 |
2014年 | 5篇 |
2013年 | 11篇 |
2012年 | 5篇 |
2011年 | 5篇 |
2010年 | 7篇 |
2009年 | 10篇 |
2008年 | 4篇 |
2007年 | 2篇 |
2006年 | 6篇 |
2005年 | 8篇 |
2004年 | 3篇 |
2003年 | 3篇 |
2002年 | 8篇 |
2001年 | 9篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 8篇 |
1996年 | 10篇 |
1995年 | 8篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有228条查询结果,搜索用时 15 毫秒
1.
某型涡扇发动机插板式进气畸变实验中,当插板升高到35%以上,进气截面各个测点畸变扰动出现约为32 Hz大幅振荡.用气流压力波动方程计算了进气道容腔谐振频率为34 Hz.表明该谐振是由插板与发动机之间的容腔引起的.不同转速和流量下,计算和实验的结果都基本稳定.由分析可知:150 Hz以下脉动压力是大幅稳定和周期性的.高频部分主要是小幅随机压力脉动,其速率和加速度变化比较剧烈.在发动机喘振前,谐振频率压力振荡能量大大增加,其它低频和高频成分能量迅速减少,形成典型的谐振型压力振荡. 相似文献
2.
对一种超声速双侧二元进气道在马赫数2.6条件下的喘振特性开展试验研究,通过分析进气道沿程不同位置的压力变化规律,获得了进气道从不起动到再起动过程的流动特性.结果表明:不同内流道堵塞度下,双侧布局的进气道喘振表现出了两种不同模式:双侧进气道同时喘振;一侧进气道喘振,另一侧进气道深度超临界工作.对比不同喘振模式下的进气道压力特性发现:双侧进气道喘振表现为低频振荡形式,内流道的压力变化与激波的周期性往复运动密切相关,喘振频率为21.5 Hz,喘振压力峰值约为来流总压的75%;单侧进气道喘振则表现为高频振荡形式,内流道的压力振荡由流动分离主导,喘振频率在325 Hz以上,为双侧进气道喘振频率的15倍,喘振压力峰值接近于来流总压. 相似文献
3.
在分析通道校正电路的内部连接方式的基础上,按不同的SST指令和nHC换算转速分类进行了试验。通过喘振压力信号对综合调节器的校正试验,得到了喘振压力信号对nL,nH和TQ通道的修正关系。修正结果表明修正效果与SST指令和nHC换算转速的大小密切相关。 相似文献
4.
多级轴流压气机失速/喘振的测量及数据处理 总被引:2,自引:0,他引:2
在多级轴流高压压气机上 ,开展从气动失稳到喘振及退出喘振时对气体压力的动态测量。试验是在多级轴流高压压气机静叶设计角度及中间级引气的情况下进行的。采用高精度、高频响的动态压力传感器 ,高速同步采集板 ,快速A/D采集板和高速处理机相结合 ,借助频谱分析的方法来找出失速 /喘振频率 ,并且找出对应着该频率的各通道之间的相位差 ,分析出失速 /喘振首发级。在试验中运用信号分析方法对叶片排中失速及喘振信号进行数学处理。测量得出的结论是 :在多级轴流高压压气机中 ,失速 /喘振均属于突变型 ;在 n=0 .8时压气机工作于多值区 ;中间级引气将影响失速 /喘振。 相似文献
5.
6.
7.
涡扇发动机消喘系统飞行试验验证方法研究 总被引:1,自引:0,他引:1
针对涡扇发动机消喘系统飞行试验验证需求,和传统试验方法不能有效验证消喘结束后发动机状态恢复能力的问题,根据消喘系统工作原理,提出了单次喘振和连续多次喘振下消喘系统的飞行试验验证方法。该方法通过加装座舱开关,触发发动机调节器内设置的喘振模拟模块,发出根据真实喘振信号特征设计的喘振模拟信号,从而使得消喘系统工作,验证飞行状态下发动机消喘系统对短时切油、喷口面积和可调导叶的控制及消喘结束后发动机状态恢复的能力。试验结果表明:所提出的方法能有效验证消喘系统的功能及消喘结束后发动机状态恢复的能力。本研究对发动机消喘系统可靠性和有效性的飞行试验鉴定具有一定的工程应用价值。 相似文献
8.
针对压气机实验系统 Helmholtz共振频率的研究对于建设压气机试验系统及研究压气机流动不稳定现象均有重要意义。以北京航空航天大学跨声速压气机试验系统为背景,通过拆除该压气机试验系统的稳压箱、格栅等部件以及更改该试验系统的几何尺寸,分析该型压气机试验系统 Helmholtz 共振频率的影响因素;同时引入了Duct-Compressor-Plenum模型理论,对该压气机试验系统进行相应的模化,并对其系统 Helmholtz 共振频率进行相应估算。结果表明:在该类型的跨声速压气机试验系统中,压气机前端的稳压箱及稳压箱之前部分主要作用是为整个试验系统提供均匀的进气环境,而对系统 Helmholtz 共振频率不产生任何影响。因此,在跨声速压气机试验系统Duct-Compressor-Plenum模型模化过程中,不应将稳压箱及其之前部件进行模化。 相似文献
9.
对一种设计马赫数为5一级的定几何二元混压式亚燃冲压发动机进气道进行了风洞试验研究,得到了该进气道的反压特性,结果表明:设计状态时,随节流锥堵塞度的增加,进气道出口反压比不断增加,马赫数逐渐下降,总压恢复系数先下降后上升,通道内气流脉动的功率谱密度无明显峰值;节流锥堵塞比为72%时,发生喘振,喘振基频约为48 Hz;随节流锥堵塞比的降低,进气道喘振基频逐渐降低,进气道结束喘振后结尾激波先到达进气道进口处,然后稳定在进气道内收缩段内,随着节流锥堵塞比的进一步降低,结尾激波逐渐进入进气道扩张段。 相似文献
10.
分析了冲压发动机喷油燃烧引起内流道内正激波运动的机理,采用一维激波捕捉方法,建立了燃油喷入对正激波运动位置影响的一维仿真模型。通过仿真发现:喷入燃油并逐步增大燃油-空气当量比时,正激波逐步向上游运动;燃油-空气当量比越大,正激波越接近进气道喉道;当燃油-空气当量比增大到一定程度时,正激波距离进气道喉道最近,但并未越过喉道;进一步增大燃油-空气当量比,正激波开始向下游回退进一步分析发现:冲压发动机流道及燃烧组织匹配设计直接影响到正激波在流道内的运动位置,需要在设计中格外重视。燃油-空气当量比与激波位置的关系分析可为冲压发动机设计提供一定的理论参考。 相似文献