首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   2篇
航空   6篇
航天技术   18篇
航天   1篇
  2023年   1篇
  2018年   1篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有25条查询结果,搜索用时 46 毫秒
1.
The proton fluxes from the low-Earth orbital satellites databases (NPOES-17 and CORONAS-F) were analyzed for the quiet geomagnetic period in April 2005. The satisfactory consent was found between the experimental and the AP8 model fluxes of the trapped protons with energy more than ∼10 MeV. At the same time, trapped proton fluxes with energy less than 10 MeV measured by LEO satellites were higher than the ones predicted by the AP8 model in the region of the SAA (drift shell L < 1.5).  相似文献   
2.
针对基于连续电推进的由GTO轨道向地球静止轨道的转移问题,考虑星上自主变轨的计算能力,将轨道转移简化为推力方向固定的两阶段变轨策略,对轨控方向角进行优化.针对电推进轨道转移持续时间长,受空间环境影响较大的特点,对轨道转移过程中卫星穿越电离层、地球辐射带的情况进行分析.最后,进一步探讨了利用远地点高度高于标准GTO的轨道作为初始轨道,用以降低空间环境对卫星影响的可行性.  相似文献   
3.
Space radiation has been monitored successfully using the Radiation Risks Radiometer-Dosimeter (R3D) installed at the ESA EXPOSE-R (R3DR) facility outside of the Russian Zvezda module of the International Space Station (ISS) between March 2009 and January 2011. R3DR is a Liulin type spectrometer–dosimeter with a single Si PIN detector 2 cm2 of area and 0.3 mm thick. The R3DR instrument accumulated about 2 million measurements of the absorbed dose rate and flux of 10 s resolution. The total external and internal shielding before the detector of R3DR device is 0.41 g cm−2. The calculated stopping energy of normally incident particles to the detector is 0.78 MeV for electrons and 15.8 MeV for protons. After the Coronal Mass Ejection (CME) at 09:54 UTC on 3 April 2010, a shock was observed at the ACE spacecraft at 0756 UTC on 5 April, which led to a sudden impulse on Earth at 08:26 UTC. Nevertheless, while the magnetic substorms on 5 and 6 of April were moderate; the second largest in history of GOES fluence of electrons with energy >2 MeV was measured. The R3DR data show a relatively small amount of relativistic electrons on 5 April. The maximum dose rate of 2323 μGy day−1 was reached on 7 April; by 9 April, a dose of 6600 μGy was accumulated. By the end of the period on 7 May 2010 a total dose of 11,587 μGy was absorbed. Our data were compared with AE-8 MIN, CRESS and ESA-SEE1 models using SPENVIS and with similar observations on American, Japanese and Russian satellites.  相似文献   
4.
航空发动机叶片柔性抛光技术   总被引:3,自引:2,他引:1  
 基于发动机叶片结构特点及其抛光工艺要求,为实现叶片型面及阻尼台自动化抛光,满足其型面及进排气边尺寸、粗糙度等质量要求,消除叶片型面波纹对抛光工艺的影响,对砂带柔性抛光工艺装备技术进行研究,提出基于抛光力控制的砂带柔性磨头抛光工艺方法,并对其抛光工艺过程、抛光力控制进行研究,通过对叶片自动化抛光编程及抛光轨迹路径规划技术研究,最终实现发动机叶片高效柔性抛光工艺。抛光试验结果表明,柔性自动化抛光后叶片型面尺寸精度可达±0.06 mm,粗糙度低于Ra0.4,与传统手工抛光方法相比,大大提高其抛光效率及表面质量稳定性,降低劳动强度,且减少粉尘污染。  相似文献   
5.
The past dozen years have produced a new paradigm with regard to the source regions of comets in the early solar system. It is now widely recognized that the likely source of the Jupiter-family short-period comets (those with Tisserand parameters, T > 2 and periods, P, generally < 20 years) is the Kuiper belt in the ecliptic plane beyond Neptune. In contrast, the source of the Halley-type and long-period comets (those with T < 2 and P > 20 years) appears to be the Oort cloud. However, the comets in the Oort cloud almost certainly originated elsewhere, since accretion is very inefficient at such large heliocentric distances. New dynamical studies now suggest that the source of the Oort cloud comets is the entire giant planets region from Jupiter to Neptune, rather than primarily the Uranus-Neptune region, as previously thought. Some fraction of the Oort cloud population may even be asteroidal bodies formed inside the orbit of Jupiter. These comets and asteroids underwent a complex dynamical random walk among the giant planets before they were ejected to distant orbits in the Oort cloud, with possible interesting consequences for their thermal and collisional histories. Observational evidence for diversity in cometary compositions is limited, at best. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
6.
To construct models for hazard prediction from radiation belt particles to satellite electronics, one should know temporal behavior of the particle fluxes. We analyzed 11-year variation in relativistic electron flux (E>2 MeV) at geosynchronous orbit using measurements made by GOES satellites during the 23rd sunspot cycle. As it is believed that electron flux enhancements are connected with the high-speed solar wind streams and ULF or/and VLF activity in the magnetosphere, we studied also solar cycle changes in rank order cross-correlation of the outer radiation belt electron flux with the solar wind speed and both interplanetary and on-ground wave intensity. Data from magnetometers and plasma sensors onboard the spacecraft ACE and WIND, as well as magnetic measurements at two mid-latitude diametrically opposite INTERMAGNET observatories were used. Results obtained show that average value of relativistic electron flux at the decay and minimum phases of solar activity is one order higher than the flux during maximum sunspot activity. Of all solar wind parameters, only solar wind speed variation has significant correlation with changes in relativistic electron flux, taking the lead over the latter by 2 days. Variations in ULF amplitude advance changes in electron flux by 3 days. Results of the above study may be of interest for model makers developing forecast algorithms.  相似文献   
7.
On 14 October 1999, the Chinese-Brazil earth resource satellite (CBERS-1) was launched in China. On board of the satellite there was an instrument designed at Peking University to detect the energetic particle radiation inside the satellite so the radiation fluxes of energetic particles in the cabin can be monitored continuously. Inside a satellite cabin, radiation environment consists of ether penetrated energetic particles or secondary radiation from satellite materials due to the interactions with primary cosmic rays.Purpose of the detectors are twofold, to monitor the particle radiation in the cabin and also to study the space radiation environment The data can be used to study the radiation environment and their effects on the electronics inside the satelhte cabin. On the other hand, the data are useful in study of geo-space energetic particle events such as solar proton events, particle precipitation and variations of the radiation belt since there should be some correlation between the radiation situation inside and outside the satellite.The instrument consists of two semi-conductor detectors for protons and electrons respectively. Each detector has two channels of energy ranges. They are 0.5-2MeV and ≥2MeV for electrons and 5-30MeV and 30-60MeV for protons. Counting rate for all channels are up to 104/(cm2@s)and power consumption is about 2.5 W. There are also the additional functions of CMOS TID (total integrated dose) effect and direct SEU monitoring. The data of CBMC was first sent back on Oct. 17 1999 and it's almost three years from then on. The detector has been working normally and the quality of data is good.The preliminary results of data analysis of CBMC not only reveal the effects of polar particle precipitation and radiation belt on radiation environment inside a satellite, but also show some important features of the geo-space energetic particle radiation.As one of the most important parameters of space weather, the energetic charged particles have great influences on space activities and ground tech nology. CBMC is perhaps the first long-term on-board special equipment to monitor the energetic particle radiation environment inside the satellite and the data it accnmulated are very useful in both satellite designing and space research.  相似文献   
8.
This novel concept expels neutral gas in the presence of geomagnetically-trapped protons in near-Earth orbit. The expelled neutral gas acts to induce charge exchange collisions with the geomagnetically-trapped protons and induce drag on objects which pass through it. The charge exchange collisions between the neutral gas and the geomagnetically-trapped protons create neutrals with similar kinetic energy that are not confined by the geomagnetic field. The charge exchange neutrals are able to collide with orbital objects and perturb their orbits. The delta-v applied by the charge exchange neutral flux is greatest on high area-to-mass objects. Numerical simulation shows charge exchange neutral impacts produce a delta-v on objects on the order of 3.8 x 10−11 m/s at a distance of 1 km from the center of the expelled gas in a 1,000 km orbit. The impulse imparted by charge exchange neutral impacts is at least six orders of magnitude smaller than that provided by the induced drag caused by gas expulsion. The localized drag increase can force a majority of small objects into the orbit of the expelled gas cloud, even if that orbit is retrograde to the initial orbit of the objects. This new technique can be applied to the remediation of space debris.  相似文献   
9.
The diverse populations of icy bodies of the outer Solar System (OSS) give critical information on the composition and structure of the solar nebula and the early phases of planet formation. The two principal repositories of icy bodies are the Kuiper belt or disk, and the Oort Cloud, both of which are the source regions of the comets. Nearly 1000 individual Kuiper belt objects have been discovered; their dynamical distribution is a clue to the early outward migration and gravitational scattering power of Neptune. Pluto is perhaps the largest Kuiper belt object. Pluto is distinguished by its large satellite, a variable atmosphere, and a surface composed of several ices and probable organic solid materials that give it color. Triton is probably a former member of the Kuiper belt population, suggested by its retrograde orbit as a satellite of Neptune. Like Pluto, Triton has a variable atmosphere, compositionally diverse icy surface, and an organic atmospheric haze. Centaur objects appear to come from the Kuiper belt and occupy temporary orbits in the planetary zone; the compositional similarity of one well studied Centaur (5145 Pholus) to comets is notable. New discoveries continue apace, as observational surveys reveal new objects and refined observing techniques yield more physical information about specific bodies.  相似文献   
10.
Comprehensive study of the dose, flux and deposited energy spectra shape data obtained by Liulin type spectrometers on spacecraft (five different experiments) and aircraft since 2001 is performed with the aim of understanding how well these parameters can characterize the type of predominant particles and their energy in the near Earth radiation environment. Three different methods for characterisation of the incoming radiation from Liulin spectrometers are described. The results revealed that the most informative one is by the shape of the deposited energy spectra. Spectra generated by Galactic Cosmic Rays (GCR) protons and their secondaries are with linear falling shape in the coordinates deposited energy/deposited per channel dose rate. The position of the maximum of the deposited energy spectra inside the South Atlantic Anomaly (SAA) region depends on the incident energy of the incoming protons. Spectra generated by relativistic electrons in the outer radiation belt have a maximum in the first channels. For higher energy depositions these spectra are similar to the GCR spectra. Mixed radiation by protons and electrons and/or bremsstrahlung is characterized by spectra with 2 maxima. All type of spectra has a knee close to 6.2 MeV deposited energy, which correspond to the stopping energy of protons in the detector. Dose to flux ratio known also as specific dose is another high information parameter, which is given by experimentally obtained formulae [Heffner, J. Nuclear radiation and safety in space. M. Atomizdat. 115, 1971 (in Russian)] connecting the dose to flux ratio and the incident energy of the particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号