首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  国内免费   1篇
航空   5篇
航天技术   16篇
航天   1篇
  2022年   1篇
  2019年   4篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2009年   1篇
  2003年   4篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
The satellite gravity gradiometric data can be used directly to recover the gravity anomaly at sea level using inversion of integral formulas. This approach suffers by the spatial truncation errors of the integrals, but these errors can be reduced by modifying the formulas. It allows us to consider smaller coverage of the satellite data over the region of recovery. In this study, we consider the second-order radial derivative (SORD) of disturbing potential (Trr) and determine the gravity anomaly with a resolution of 1° × 1° at sea level by inverting the statistically modified version of SORD of extended Stokes’ formula. Also we investigate the effect of the spatial truncation error on the quality of inversion considering noise of Trr. The numerical investigations show satisfactory results when the area of Trr coverage is the same with that of the gravity anomaly and the integral formula is modified by the biased least-squares modification. The error of recovery will be about 6 mGal after removing the regularization bias in the presence of 1 mE noise in Trr measured on the orbit.  相似文献   
2.
Sneeuw  Nico 《Space Science Reviews》2003,108(1-2):37-46
The decade of the geopotentials started July 2000 with the launch of the German high-low SST mission CHAMP. Together with the joint NASA-DLR low-low SST mission GRACE and the ESA gradiometry mission GOCE an unprecedented wealth of geopotential data becomes available over the next few years. Due to the sheer number of unknown gravity field parameters (up to 100 000) and of observations (millions), especially the latter two missions are highly demanding in terms of computational requirements. In this paper several modelling strategies are presented that are based on a semi-analytical approach. In this approach the set of normal equations becomes block-diagonal with maximum block-sizes smaller than the spherical harmonic degree of resolution. The block-diagonality leads to a rapid and powerful gravity field analysis tool. Beyond the more-or-less conventional space-wise and time-wise formulations, the torus approach and Rosborough's representation are discussed. A trade-off between pros and cons of each of the modelling strategies will be given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
Gravity missions such as the Gravity field and steady-state Ocean Circulation Explorer (GOCE) are equipped with onboard Global Positioning System (GPS) receivers for precise orbit determination (POD), instrument time-tagging, and the extraction of the long wavelength part of the Earth’s gravity field. The very low orbital altitude of the GOCE satellite and the availability of dense 1 s GPS tracking data are ideal characteristics to exploit the contribution of GPS high-low Satellite-to-Satellite Tracking (hl-SST) to gravity field determination. We present gravity field solutions based on about 8 months of GOCE GPS hl-SST data from 2009 and compare the results with those obtained from the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery And Climate Experiment (GRACE) missions. The very low orbital altitude of GOCE significantly improves gravity field recovery from GPS hl-SST data above degree 20, but not for the degrees below 20, where the quality of the spherical harmonic coefficients remains essentially unchanged. Despite the limited time span of GOCE data used, the gravity field of the Earth can be resolved up to about degree 115 using GPS data only. Empirically determined phase center variations (PCVs) of the GOCE onboard GPS helix antenna are, however, mandatory to achieve this performance.  相似文献   
4.
Needs and Tools for Future Gravity Measuring Missions   总被引:1,自引:0,他引:1  
This paper compares the requirements that can be expected of gravity measuring missions with respect to the status of the instrumentation and satellite technologies. The error sources of gravity gradiometry and satellite-to-satellite tracking are analysed and the elements limiting the accuracy are identified. Proposed and approved future missions that will fly technologies of interest for gravity sensing are recalled. Areas of technical development of interest are reviewed. The article finishes with two possible conceptual missions presented as examples and with a chapter of conclusions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
地球卫星重力测量计划CHAMP(CHAllenging Minisatellite Payload)、GRACE(Gravity Recovery and Climate Experiment)、GOCE(Gravity field and steady-state Ocean Circulation Explorer)和月球卫星重力测量计划(Gravity Recovery and Interior Laboratory,GRAIL)的成功实施,以及下一代地球重力卫星(GRACE Follow-On)的即将发射昭示着我们将迎来一个前所未有的高精度和高空间分辨的深空卫星重力探测时代。围绕深空卫星重力测量的研究背景、必要性、可行性、卫星重力反演软件平台构建、轨道摄动和未来研究方向开展了研究论证。研究表明:深空卫星重力测量作为新世纪重力探测技术,在精化量体重力场、提高惯性导航精度、天体动力学、天体物理学和军事技术的研究,以及促进国民经济发展和提高社会效益等方面具有广泛的应用前景。  相似文献   
6.
GOCE is the first satellite with a gravitational gradiometer (SGG). This allows to determine a gravity field model with high spatial resolution and high accuracy. Four of the six independent components of the gravitational gradient tensors (GGT) are measured with high accuracy in the so-called measurement band (MB) from 5 to 100 mHz by the GOCE gradiometer. Based on more than 1 year of GOCE measurements, two gravity field models have been derived. Here, we introduce a strategy for spherical harmonic analysis (SHA) from GOCE measurements, with a bandpass filter applied to the SGG data, combined with orbit analysis based on the integral equation approach, and additional constraints (or stabilization) in the polar areas where no observation is available due to the orbit geometry. In addition, we combined the GOCE SGG part with a set of GRACE normal equations. This improves the accuracy of the gravity field in the long-wavelength parts, due to the complementarity of GOCE and GRACE. Comparison with other models and with external data shows that our results are rather close to the GPS-levelling data in well-selected test regions, with an uncertainty of 4–7 cm, for truncation at degree 200.  相似文献   
7.
Precise Orbit Determination (POD) for the Gravity field and steady-state Ocean Circulation Explorer (GOCE), the first core explorer mission by the European Space Agency (ESA), forms an integrated part of the so-called High-Level Processing Facility (HPF). Two POD chains have been set up referred to as quick-look Rapid and Precise Science Orbit determination or RSO and PSO, respectively. These chains make use of different software systems and have latencies of 1 day and 2 weeks, respectively, after tracking data availability. The RSO and PSO solutions have to meet a 3-dimensional (3D) position precision requirement of 50 cm and a few cm, respectively. The tracking data will be collected by the new Lagrange GPS receiver and the predicted characteristics of this receiver have been taken into account during the implementation phase of the two chains.  相似文献   
8.
Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPS-denied environments.Starlight refraction compensates for the significant along-track position error that occurs from only using gravity gradients and benefits from integration in terms of improved accuracy in radial and cross-track position estimates.The between-epoch differencing of gravity gradients is employed to eliminate slowly varying measurement biases and noise near the orbit revolution frequency.The refraction angle measurements are directly used and its Jacobian matrix derived from an implicit observation equation.An information fusion filter based on a sequential extended Kalman filter is developed for the orbit determination.Truth-model simulations are used to test the performance of the algorithm,and the effects of differencing intervals and orbital heights are analyzed.A semi-simulation study using actual gravity gradient data from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) combined with simulated starlight refraction measurements is further conducted,and a three-dimensional position accuracy of better than 100 m is achieved.  相似文献   
9.
The use of geoid heights has been one of the available methodologies utilized for the independent calibration/validation of altimeters on-board satellites. This methodology has been employed for long in the Gavdos dedicated cal/val facility (Crete, Greece), where calibration results for the Jason satellites have been estimated, both for ascending and descending passes. The present work gives a detailed overview of the methodology followed in order to estimate a high-resolution and accuracy gravimetric geoid model for the wider Gavdos area, in support of the on-going calibration work. To estimate the geoid model, the well-known remove-compute-restore method is used while residual geoid heights are estimated through least-squares collocation so that associated errors are determined as well. It is found that the estimated formal geoid errors from LSC along passes 018 and 109 of Jason satellites, used for the bias estimation, range between ±0.8–1.6 cm. The so-derived geoid heights are employed in the determination of the Jason-2 altimeter bias for all available cycles (cycles 1-114, spanning the period from July 2008 to August 2011) together with the RioMed DOT model. From the results acquired the Jason-2 bias has been estimated to be +196.1 ± 3.2 mm for pass 109 and +161.9 ± 5.1 mm for pass 018. Within the same frame, the GOCE/GRACE-based geopotential model GOCO02s has been used to estimate the mean dynamic ocean topography and the steady-state circulation in the area around Gavdos. The so-derived DOT model was used to estimate the Jason-2 bias in an effort to evaluate the performance of satellite-only geoid models and investigate whether their spatial resolution and accuracy provides some improvement w.r.t. traditional local gravimetric geoids. From the results acquired with geoid heights from GOCO02s, the estimated Jason-2 bias deviates significantly from that of the local gravimetric model, which can be attributed to a possible mean offset and the low resolution of GOCE-based GGMs. On the other hand, when the newly estimated GOCE-based DOT was employed with geoid heights from the local gravimetric geoid model, the Jason-2 bias has been estimated to be +185.1 ± 3.2 mm for pass 109 and +130.2 ± 5.1 mm for pass 018.  相似文献   
10.
The first European Space Agency Earth explorer core mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) has been launched on March 17, 2009. The 12-channel dual-frequency Global Positioning System receiver delivers 1 Hz data and provides the basis for precise orbit determination (POD) on the few cm-level for such a very low orbiting satellite (254.9 km). As a member of the European GOCE Gravity Consortium, which is responsible for the GOCE High-level Processing Facility (HPF), the Astronomical Institute of the University of Bern (AIUB) provides the Precise Science Orbit (PSO) product for the GOCE satellite. The mission requirement for 1-dimensional POD accuracy is 2 cm. The use of in-flight determined antenna phase center variations (PCVs) is necessary to meet this requirement. The PCVs are determined from 154 days of data and the magnitude is up to 3-4 cm. The impact of the PCVs on the orbit determination is significant. The cross-track direction benefits most of the PCVs. The improvement is clearly seen in the orbit overlap analysis and in the validation with independent Satellite Laser Ranging (SLR) measurements. It is the first time that SLR could validate the cross-track component of a LEO orbit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号