排序方式: 共有32条查询结果,搜索用时 0 毫秒
1.
2.
应用基于k-ω SST湍流模型的IDDES(Improved Delayed Detached Eddy Simulation)方法,就失速点附近翼型前缘典型双角状积冰导致的复杂分离流动进行了数值模拟研究。通过与风洞试验结果进行对比,表明对于此类分离流动问题,IDDES方法能够在壁面附近取得良好的速度预测结果,有效解析分离区域内的中小尺度湍流结构,较为准确地描述大尺度时均分离泡的再附位置和形态特征,适用于翼型结冰后复杂流动的精细分析。同时计算结果显示当此带冰翼型位于失速点附近时,角状冰后方脱落剪切层内部的旋涡不稳定析出和输运过程促进了外部流动与回流区域流动间的掺混,将导致流动发生非定常再附现象。 相似文献
3.
独特的动力形式赋予了涡桨飞机优越的推进效率和良好的低速机动、起降性能,使得其在军用及民用领域占有重要的地位并得以不断发展,但同时也带来了一系列需要重点关注的设计问题。本文从目前国内外涡桨飞机的发展现状和设计特点出发,提出其面临的主要气动问题。重点针对国内亟待发展的舰载类涡桨飞机起降过程中的失速和操纵问题进行深入研究,剖析了翼面附近流动的分离状态和发展趋势对于失速特性及操纵安全性的影响规律,归纳总结出需要关注的关键约束和设计原则。在此基础上,通过对一组计算实例的分析,给出了机翼空间流场变化特征和宏观气动力之间的内在联系,并深入阐述了三维增升构型与干净构型及其各站位翼剖面的设计关联性。 相似文献
4.
航空发动机用热端部件及其防护涂层具有密度高、结构复杂、服役环境恶劣、承受载荷复杂等特点,采用传统的分析测试方法对其进行损伤演变、质量评估和寿命预测研究存在极大挑战,无法满足航空发动机更高温度、更高速度、更高可靠性的需求。大型科学装置中的同步辐射技术和中子衍射技术具有高穿透性、高精度、高耦合度和高通量等特点,较传统检测技术更适用于未来航空航天领域高温结构材料的研发和测试,但上述两种技术在中国相关领域的基础研究和工程应用方面仍需进一步开展工作。本文着重介绍近年来国内外采用同步辐射和中子衍射技术进行航空发动机热端部件及其防护涂层基础科学研究与实际工程应用方面的进展与现状。 相似文献
5.
针对焊锡粒多余物粒径特征识别过程中,粒径区分度不足和粒径特征参数类间交叉对分类准确率的不利影响,提出基于聚类的高精密航天器多余物粒径特征识别方法。从信号时域与频域分析技术出发,选取多个特征参数构建多余物粒径初始特征参数向量;采用Fisher比量化各个特征参数对粒径的区分能力并削除贡献率较低的特征参数,从而构建最终多余物粒径特征识别模型;用K均值聚类算法对无标记的不同粒径等级训练样本进行学习后揭示不同粒径等级下输入特征参数的分布规律,实现混合粒径的识别。验证试验表明,在含单个和2个多余物的情况下,多余物粒径的总体识别准确率达81.8%,满足实际要求。 相似文献
6.
7.
高亚声速层流飞机是现阶段飞机设计的一个重点研究方向,可以有效提高飞机气动性能,增加航程航时等关键指标,但层流翼型在低速条件下与传统翼型相比气动特性较差。利用改进的剪切层自适应IDDES方法针对某特殊设计的层流验证机层流翼段进行分析及改进,抑制其由于翼型本身及翼身结合处的三维效应在大攻角状态下所引起的流动分离,使得翼段在低速大迎角状态下获得相对较好的气动特性。结果表明通过对层流翼段的翼型前缘修型,可以在低速条件下显著抑制流动分离,使得层流翼段在低速性能提升的同时在高速条件下也能保证较好的气动特性。 相似文献
9.
因随着卫星通信系统向高频段、大带宽、多通道方向发展,传统微波技术在高频微波信号的产生、馈送、交换等方面越来越多受到电子瓶颈的限制,而微波光子学作为一门淅兴学科可解决上述问题,对星上高性能集中式本振信号产生及多路馈送技术进行了研究。研究了两种高频微波本振信号产生方法,用低频射频信号或无需射频信号输入即可生成高频的微波本振信号,大幅降低系统对光电器件带宽的要求。一种是基于两个级联马赫-曾德尔(MZ)调制器的高频微波信号产生方法,可生成八倍频微波信号,调节输入射频信号频率即可调整生成微波信号的频率,系统可调谐性较好。另一种是基于光电振荡器的微波信号生成方法,通过设置偏振调制器、MZ调制器及移相器的参数,可实现对光电振荡器环路谐振信号的四、六和八倍频。分析了高频微波本振信号光纤馈送中损耗和色散的影响,发现两者对星上微波本振信号的馈送影响很小,且星上馈送系统的体积和重量可明显降低。研究将为微波光子技术用于星上载荷提供理论基础和技术支撑。 相似文献
10.
参照C-17运输机发动机安装位置,考虑内、外涵道分开排气,建立了外吹式襟翼动力增升全机几何分析模型以及相应的巡航构型.采用结构化多块网格技术,基于雷诺平均Navier-Stokes方法,分别对全机增升构型和单独发动机动力喷流进行数值模拟验证,在此基础上对外吹式襟翼动力喷流效应展开研究.对于低速动力增升构型,发动机喷流大部分直接冲刷襟翼下表面而后向下偏转,部分高速气流经襟翼缝道引射并加速后吹向襟翼上表面,两部分气流在襟翼后缘汇合并向下游延伸,喷流冲刷襟翼时存在明显展向横流特征.在动力喷流影响下,不仅襟翼环量大幅增加,缝翼和主翼上的环量也均有所增加,全机可用升力系数和最大升力系数均突破了机械式增升装置的极限,达到4.0以上.同时,全机低头力矩大幅增加,为纵向配平带来额外的压力.对于相应的高速巡航构型,发动机喷流主要影响机翼下表面的压力分布,使得全机升力减小,阻力明显增大.动力增升构型在基本翼设计过程中应充分考虑喷流的影响. 相似文献