首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   7篇
  国内免费   16篇
航空   45篇
综合类   2篇
航天   6篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
排序方式: 共有53条查询结果,搜索用时 0 毫秒
1.
《中国航空学报》2021,34(9):133-142
The low-speed wind tunnel experiment is carried out on a simplified aircraft model to explore the influence of wing flexibility on the aircraft aerodynamic performance. The investigation involves the measurements of force, membrane deformation and velocity field at Reynolds number of 5.4 × 104–1.1 × 105. In the lift curves, two peaks are observed. The first peak, corresponding to the stall, is sensitive to the wing flexibility much more than the second peak, which nearly keeps constant. For the optimal case, in comparison with the rigid wing model, the delayed stall of nearly 5° is achieved, and the relative lift increment is about 90%. It is revealed that the lift enhanced region corresponds to the larger deformation and stronger vibration, which leads to stronger flow mixing near the flexible wing surface. Thereby, the leading-edge separation is suppressed, and the aerodynamic performance is improved significantly. Furthermore, the effects of sweep angle and Reynolds number on the aerodynamic characteristics of flexible wing are also presented.  相似文献   
2.
When the wing of Oblique Wing Aircraft (OWA) is skewed, the center of gravity, inertia and aerodynamic characteristics of the aircraft all significantly change, causing an undesirable flight dynamic response, affecting the flying qualities, and even endangering the flight safety. In this study, the dynamic response of an OWA in the wing skewing process is simulated, showing that the three-axis movements of the OWA are highly coupled and present nonlinear characteristics during the wing skewing. As the roll control efficiency of the aileron decreases due to the shortened control arm in an oblique configuration, the all-moving horizontal tail is used for additional roll and the control allocation is performed based on minimum control energy. Given the properties of pitch-roll-yaw coupling and control input and state coupling, and the difficulty of establishing an accurate aerodynamic model in the wing skewing process due to unsteady aerodynamic force, a multi-loop sliding mode controller is formulated by the time-scale separation method. The closed-loop simulation results show that the asymmetric aerodynamics can be balanced and that the velocity and altitude of the aircraft maintain stable, which means that a smooth transition is obtained during the OWA’s wing skewing.  相似文献   
3.
基于等效板的含离散源损伤机翼结构分析   总被引:1,自引:0,他引:1  
研究离散源损伤对机翼结构的影响,可以大幅度提高飞机在不良损伤事故下的生存能力.由于机翼内部结构复杂,很难对含离散源损伤机翼结构进行精确分析,而且精确的建模和仿真在建模与计算过程中往往也非常耗时.因此,以含离散源损伤机翼为对象,采用有限元优化设计方法,确立了一种机翼结构等效板模型的建模方法.建立的等效板模型可对含离散源损伤机翼实现快速、准确的静力学和动力学分析.  相似文献   
4.
本文通过运用W∧2统计量的检验方法对XXX飞机八个失效的机翼主梁寿命分布进行了检验,得出该主梁寿命分布为威布尔分布。  相似文献   
5.
Extensive experimental studies on the heat transfer characteristics of two rows of aligned jet holes impinging on a concave surface in a wing leading edge were conducted, where50000 Rej 90000, 1.74 H/d 27.5, 66° a 90°, and 13.2 r/d 42.03. The finding was that the heat transfer performance at the jet-impingement stagnation point with two rows of aligned jet holes was the same as that with a single row of jet holes or the middle row of three-row configurations when the circumferential angle of the two jet holes was larger than 30°. The attenuation coefficient distribution of the jet impingement heat transfer in the chordwise direction was so complicated that two zones were divided for a better analysis. It indicated that: the attenuation coefficient curve in the jet impingement zone exhibited an approximate upside-down bell shape with double peaks and a single valley; the attenuation coefficient curve in the non-jet impingement zone was like a half-bell shape, which was similar to that with three rows of aligned jet holes; the factors,including Rej, H/d and r/d, affected the attenuation coefficient value at the valley significantly.When r/d was increased from 30.75 to 42.03, the attenuation rates of attenuation coefficient increased only by 1.8%. Consequently, experimental data-based correlation equations of the Nusselt number for the heat transfer at the jet-impingement stagnation point and the distributionof the attenuation coefficient in the chordwise direction were acquired, which play an important role in designing the wing leading edge anti-icing system with two rows of aligned jet holes.  相似文献   
6.
文中针对大型冲压翼伞发展的两大难题:开伞动力学和收口技术,介绍了两种分析大型冲压翼伞气动力性能的方法——飞行性能模拟法和有限元模拟法,最后介绍了美国先锋公司开发的中幅收口技术。  相似文献   
7.
分析了 K8、 JL8机翼接头孔精加加后与检验量规位置协调的条件,介绍了为提高它们之间协调准确度所采取的措施及其效果。  相似文献   
8.
A modern transonic computational fluid dynamics test case is described in this paper, which is the Aerodynamic Validation Model (AVM) from the Chinese Aeronautical Establishment (CAE). The CAE-AVM is a representation of a modern transonic business jet aircraft with a design Mach number of 0.85. Numerical simulations for the AVM are conducted for two geometries: one baseline geometry, and one geometry that includes the applied model support system of the wind tunnel as well as the deformed wing shape that occurred during wind tunnel testing. The combined influence of wing deformation and model support interference on local and integral aerodynamic features is presented. Comparisons between CFD and experimental results are made; reasons of discrepancy between results from considered cases are analyzed.  相似文献   
9.
《中国航空学报》2016,(2):411-423
This article examines the suitability of fabricating artificial, dragonfly-like, wing frames from materials that are commonly used in unmanned aircraft(balsa wood, black graphite carbon fiber and red prepreg fiberglass). Wing frames made with Type 321 stainless steel are also examined for comparison. The purpose of these wings is for future use in biomimetic micro aerial vehicles(BMAV). BMAV are a new class of unmanned micro-sized aerial vehicles that mimic flying biological organisms(like flying insects). Insects, such as dragonflies, possess corrugated and complex vein structures that are difficult to mimic. Simplified dragonfly-like wing frames were fabricated from these materials and then a nano-composite film was adhered to them, which mimics the membrane of an actual dragonfly. Finite element analysis simulations were also performed and compared to experimental results. The results showed good agreement(less than 10% difference for all cases).Analysis of these results shows that stainless steel is a poor choice for this wing configuration, primarily because of the aggressive oxidation observed. Steel, as well as balsa wood, also lacks flexibility. In comparison, black graphite carbon fiber and red prepreg fiberglass offer some structural advantages, making them more suitable for consideration in future BMAV applications.  相似文献   
10.
Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics (SPH) method is used for simulating the bird strike to an airplane wing leading edge structure. In order to verify the model, first, experiment of bird strike to a flat aluminum plate is simulated, and then bird impact on an airplane wing lead-ing edge structure is investigated. After that, considering dimensions of wing internal structural components like ribs, skin and spar as design variables, we try to minimize structural mass and wing skin deformation simultaneously. To do this, bird strike simulations to 18 different wing structures are made based on Taguchi’s L18 factorial design of experiment. Then grey relational analysis is used to minimize structural mass and wing skin deformation due to the bird strike. The analysis of variance (ANOVA) is also applied and it is concluded that the most significant parameter for the performance of wing structure against impact is the skin thickness. Finally, a validation simu-lation is conducted under the optimal condition to show the improvement of performance of the wing structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号