首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   14篇
航空   17篇
航天技术   33篇
航天   9篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  1999年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28?ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6?cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5?cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8?cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7?cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.  相似文献   
2.
3.
The precise point positioning (PPP) technique is widely used in time and frequency applications. Because of the real-time service (RTS) project of the International GNSS Service, we can use the PPP technique for real-time clock comparison and monitoring. As a participant in the RTS, the Centre National d’Etudes Spatiales (CNES) implements the PPPWIZARD (Precise Point Positioning with Integer and Zero-difference Ambiguity Resolution Demonstrator) project to validate carrier phase ambiguity resolution. Unlike the Integer-PPP (IPPP) of the CNES, fixing ambiguities in the post-processing mode, the PPPWIZARD operates in the real-time mode, which is also called real-time IPPP (RT-IPPP). This paper focuses on applying the RT-IPPP for real-time clock comparison and monitoring. We review the principle of real-time clock comparison and monitoring, and introduce the methodology of the RT-IPPP technique. The observations of GPS, GLONASS and Galileo were processed for the experiments. Five processing modes were provided in the experiment to analyze the benefits of ambiguity resolution and multi-GNSS. In the clock comparison experiment, the average reduction ratios of standard deviations with respect to the G PPP mode range from 9.7% to 35.0%. In the clock monitoring experiment, G PPP mode can detect clock jumps whose magnitudes are larger than 0.9 ns. The RT-IPPP technique with GRE PPP AR (G) mode allows for the detection of any clock jumps larger than 0.6 ns. For frequency monitoring, G PPP mode allows detection of frequency changes larger than 1.1 × 10−14. When the RT-IPPP technique is applied, monitoring with GRE PPP AR (G) mode can detect frequency changes larger than 6.1 × 10−15.  相似文献   
4.
精密单点定位(PPP)时间比对数据会受到观测噪声的影响,因此对时间比对数据进行消噪是一项重要工作。提出一种基于经验模分解(EMD)的PPP时间比对数据消噪方法,并将该方法与Vondrak滤波方法的消噪效果进行对比。结果表明,两种方法的消噪效果相当,均能有效滤除PPP时间比对数据中的随机噪声,明显改善时间比对的稳定度。  相似文献   
5.
一种基于GPRS的车辆监控系统   总被引:31,自引:0,他引:31  
介绍 GPRS网的业务、特点、网络结构、基本工作流程、基于 GPRS车辆监控系统的设计方案、系统组成及工作原理。介绍系统实现的关键技术 ,用试验测试数据对系统性能进行了分析 ,得出了基于 GPRS的车辆监控系统将有较好的应用前景的结论。  相似文献   
6.
北斗三号全球卫星导航系统已正式建成并开通服务。为了利用实时改正数信息系统地揭示北斗三号精密单点定位性能,并为用户提供理论依据和应用参考,首先解算了卫星实时精密轨道、钟差及其改正数,分析了其精度。然后基于实时改正数信息,利用监测站广播星历和观测数据,分别进行了双频静态、双频仿动态、单频静态和单频仿动态仿实时精密单点定位,以评估其性能。结果表明:北斗三号MEO卫星实时轨道和钟差精度均值分别约为12cm和0.2ns,满足实时精密单点定位需求。静态实时精密单点定位精度优于动态,双频优于单频,均可达到分米级。对于定位收敛时间,双频静态最短,约为40min;双频动态和单频静态均约为85min;单频动态最长,约为120min。  相似文献   
7.
Given the severe effects of the ionosphere on global navigation satellite system (GNSS) signals, single-frequency (SF) precise point positioning (PPP) users can only achieve decimeter-level positioning results. Ionosphere-free combinations can eliminate the majority of ionospheric delay, but increase observation noise and slow down dual-frequency (DF) PPP convergence. In this paper, we develop a regional ionosphere modeling and rapid convergence approach to improve SF PPP (SFPPP) accuracy and accelerate DF PPP (DFPPP) convergence speed. Instead of area model, ionospheric delay is modeled for each satellite to be used as a priori correction. With the ionospheric, wide-lane uncalibrated phase delay (UPD) and residuals satellite DCBs product, the wide-lane observations for DF users change to be high-precision pseudorange observations. The validation of a continuously operating reference station (CORS) network was analyzed. The experimental results confirm that the approach considerably improves the accuracy of SFPPP. For DF users, convergence time is substantially reduced.  相似文献   
8.
精密单点定位(PPP)时间比对数据会受到观测噪声的影响,因此对时间比对数据进行消噪是一项重要工作。提出一种基于经验模分解(EMD)的PPP时间比对数据消噪方法,并将该方法与Vondrak滤波方法的消噪效果进行对比。结果表明,两种方法的消噪效果相当,均能有效滤除PPP时间比对数据中的随机噪声,明显改善时间比对的稳定度。  相似文献   
9.
Precise satellite orbit and clocks are essential for providing high accuracy real-time PPP (Precise Point Positioning) service. However, by treating the predicted orbits as fixed, the orbital errors may be partially assimilated by the estimated satellite clock and hence impact the positioning solutions. This paper presents the impact analysis of errors in radial and tangential orbital components on the estimation of satellite clocks and PPP through theoretical study and experimental evaluation. The relationship between the compensation of the orbital errors by the satellite clocks and the satellite-station geometry is discussed in details. Based on the satellite clocks estimated with regional station networks of different sizes (∼100, ∼300, ∼500 and ∼700 km in radius), results indicated that the orbital errors compensated by the satellite clock estimates reduce as the size of the network increases. An interesting regional PPP mode based on the broadcast ephemeris and the corresponding estimated satellite clocks is proposed and evaluated through the numerical study. The impact of orbital errors in the broadcast ephemeris has shown to be negligible for PPP users in a regional network of a radius of ∼300 km, with positioning RMS of about 1.4, 1.4 and 3.7 cm for east, north and up component in the post-mission kinematic mode, comparable with 1.3, 1.3 and 3.6 cm using the precise orbits and the corresponding estimated clocks. Compared with the DGPS and RTK positioning, only the estimated satellite clocks are needed to be disseminated to PPP users for this approach. It can significantly alleviate the communication burdens and therefore can be beneficial to the real time applications.  相似文献   
10.
Presently, the ionosphere effect is the main source of the error in the Global Positioning System (GPS) observations. This effect can largely be removed by using the two-frequency measurements, while to obtain the reasonable results in the single-frequency applications, an accurate ionosphere model is required. Since the global ionosphere models do not meet our needs everywhere, the local ionosphere models are developed. In this paper, a rapid local ionosphere model over Iran is presented. For this purpose, the GPS observations obtained from 40 GPS stations of the Iranian Permanent GPS Network (IPGN) and 16 other GPS stations around Iran have been used. The observations have been selected under 2014 solar maximum, from the days 058, 107, 188 and 271 of the year 2014 with different geomagnetic activities. Moreover, ionospheric observables based on the precise point positioning (PPP) have been applied to model the ionosphere. To represent our ionosphere model, the B-spline basis functions have been employed and the variance component estimation (VCE) method has been used to regularize the problem.To show the efficiency our PPP-derived local ionosphere model with respect to the International GNSS Service (IGS) global models, these models are applied on the single point positioning using single-frequency observations and their results are compared with the precise coordinates obtained from the double-differenced solution using dual-frequency observations. The results show that the 95th percentile of horizontal and vertical positioning errors of the single-frequency point positioning are about 3.1 and 13.6?m, respectively, when any ionosphere model are not applied. These values significantly improve when the ionosphere models are applied in the solutions. Applying CODE’s Rapid Global ionosphere map (CORG), improvements of 59% and 81% in horizontal and vertical components are observed. These values for the IGS Global ionosphere map (IGSG) are 70% and 82%, respectively. The best results are obtained from our local ionosphere model, where 84% and 87% improvements in horizontal and vertical components are observed. These results confirm the efficiency of our local ionosphere model over Iran with respect to the global models. As a by-product, the Differential Code Biases (DCBs) of the receivers are also estimated. In this line, we found that the intra-day variations of the receiver DCBs could be significant. Therefore, these variations must be taken into account for the precise ionosphere modeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号