首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   97篇
  国内免费   115篇
航空   333篇
航天技术   248篇
综合类   92篇
航天   120篇
  2023年   18篇
  2022年   37篇
  2021年   35篇
  2020年   27篇
  2019年   22篇
  2018年   13篇
  2017年   13篇
  2016年   15篇
  2015年   16篇
  2014年   17篇
  2013年   12篇
  2012年   23篇
  2011年   39篇
  2010年   38篇
  2009年   44篇
  2008年   40篇
  2007年   40篇
  2006年   34篇
  2005年   40篇
  2004年   28篇
  2003年   26篇
  2002年   30篇
  2001年   38篇
  2000年   26篇
  1999年   22篇
  1998年   25篇
  1997年   32篇
  1996年   14篇
  1995年   10篇
  1994年   12篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
排序方式: 共有793条查询结果,搜索用时 15 毫秒
1.
当将人工智能技术应用于军事领域中的目标识别任务时,针对由红外图片采集的局限性而造成的训练数据不足的问题,提出了基于生成对抗网络以生成红外图像的方法,实现了数据集的扩充。对基本的生成对抗网络进行了改进,将网络的输入由随机噪声变为真实图片,使之实现了图片到图片的风格转换,即彩色图片转变为红外图片。经过网络模型的搭建和训练,实验结果表明,该方法能够有效生成清晰和高质量的红外图片,解决了由红外数据不足而造成的网络训练不充分的问题。  相似文献   
2.
In the last 20?years, and in particular in the last decade, the availability of propagation data for GNSS has increased substantially. In this sense, the ionosphere has been sounded with a large number of receivers that provide an enormous amount of ionospheric data. Moreover, the maturity of the models has also been increased in the same period of time. As an example, IGS has ionospheric maps from GNSS data back to 1998, which would allow for the correlation of these data with other quantities relevant for the user and space weather (such as Solar Flux and Kp). These large datasets would account for almost half a billion points to be analyzed. With the advent and explosion of Big Data algorithms to analyze large databases and find correlations with different kinds of data, and the availability of open source code libraries (for example, the TensorFlow libraries from Google that are used in this paper), the possibility of merging these two worlds has been widely opened. In this paper, a proof of concept for a single frequency correction algorithm based in GNSS GIM vTEC and Fully Connected Neural Networks is provided. Different Neural Network architectures have been tested, including shallow (one hidden layer) and deep (up to five hidden layers) Neural Network models. The error in training data of such models ranges from 50% to 1% depending on the architecture used. Moreover, it is shown that by adjusting a Neural Network with data from 2005 to 2009 but tested with data from 2016 to 2017, Neural Network models could be suitable for the forecast of vTEC for single frequency users. The results indicate that this kind of model can be used in combination with the Galileo Signal-in-Space (SiS) NeQuick G parameters. This combination provides a broadcast model with equivalent performances to NeQuick G and better than GPS ICA for the years 2016 and 2017, showing a 3D position Root Mean Squared (RMS) error of approximately 2?m.  相似文献   
3.
《中国航空学报》2020,33(2):439-447
Fault diagnosis is vital in manufacturing system. However, the first step of the traditional fault diagnosis method is to process the signal, extract the features and then put the features into a selected classifier for classification. The process of feature extraction depends on the experimenters’ experience, and the classification rate of the shallow diagnostic model does not achieve satisfactory results. In view of these problems, this paper proposes a method of converting raw signals into two-dimensional images. This method can extract the features of the converted two-dimensional images and eliminate the impact of expert’s experience on the feature extraction process. And it follows by proposing an intelligent diagnosis algorithm based on Convolution Neural Network (CNN), which can automatically accomplish the process of the feature extraction and fault diagnosis. The effect of this method is verified by bearing data. The influence of different sample sizes and different load conditions on the diagnostic capability of this method is analyzed. The results show that the proposed method is effective and can meet the timeliness requirements of fault diagnosis.  相似文献   
4.
张凯  王凯迪  杨曦  李少毅  王晓田 《航空学报》2021,42(2):324223-324223
复杂空战背景下针对人工干扰的博弈是红外空空导弹精确探测制导技术发展面临的瓶颈和核心技术。针对人工干扰对空中红外目标产生的遮蔽、黏连、相似等干扰现象,以及目标机动和相对运动造成的形状、尺度、辐射特性剧烈变化等实际问题,提出一种基于信息特征提取的深度卷积神经网络DNET空中红外图像目标抗干扰识别算法。首先,DNET网络对大尺度特征图像采用密集连接模块,在前部通道保存每一层的网络输出,在网络末端引入特征注意力机制,获得每个特征通道的信息特征识别权重。然后,加入多尺度密集连接模块,并与多尺度特征融合检测结合,提高对大尺度变化情况下的目标特征提取能力。实验结果表明,在伴随红外诱饵干扰的实时检测条件下,红外目标由点目标变化为成像目标,直至充满视场的整个过程中,本文抗干扰识别算法的识别精确度、召回率及识别速度分别达到99.36%、96.95%、132 fps,具备识别精确度和召回率高、识别速度快等优点,并具有良好的鲁棒性。  相似文献   
5.
Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10?Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.  相似文献   
6.
《中国航空学报》2020,33(6):1573-1588
An efficient method employing a Principal Component Analysis (PCA)-Deep Belief Network (DBN)-based surrogate model is developed for robust aerodynamic design optimization in this study. In order to reduce the number of design variables for aerodynamic optimizations, the PCA technique is implemented to the geometric parameters obtained by parameterization method. For the purpose of predicting aerodynamic parameters, the DBN model is established with the reduced design variables as input and the aerodynamic parameters as output, and it is trained using the k-step contrastive divergence algorithm. The established PCA-DBN-based surrogate model is validated through predicting lift-to-drag ratios of a set of airfoils, and the results indicate that the PCA-DBN-based surrogate model is reliable and obtains more accurate predictions than three other surrogate models. Then the efficient optimization method is established by embedding the PCA-DBN-based surrogate model into an improved Particle Swarm Optimization (PSO) framework, and applied to the robust aerodynamic design optimizations of Natural Laminar Flow (NLF) airfoil and transonic wing. The optimization results indicate that the PCA-DBN-based surrogate model works very well as a prediction model in the robust optimization processes of both NLF airfoil and transonic wing. By employing the PCA-DBN-based surrogate model, the developed efficient method improves the optimization efficiency obviously.  相似文献   
7.
The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.  相似文献   
8.
In the present paper, an artificial neural network (ANN) based technique has been developed to estimate instantaneous rainfall by using brightness temperature from the IR sensors of SEVIRI radiometer, onboard Meteosat Second Generation (MSG) satellite. The study is carried out over north of Algeria. For estimation of rainfall, weight matrices of two ANNs namely MLP1 and MLP2 are developed. MLP1 is to identify raining or non-raining pixels. When rainy pixels are identified, then for those pixels, instantaneous rainfall is estimated by using MLP2. For identification of raining and non raining pixels, 7 input parameters from the IR sensors are utilized. Corresponding data of raining/non-raining pixels are taken from radar. For instantaneous rainfall estimation, 14 input parameters are utilized, where 7 parameters are information about raining pixels and 7 parameters are related with cloud features. The results obtained show the neural network performs reasonably well.  相似文献   
9.
Recently, unmanned aerial vehicles (UAVs) acting as relay platforms have attracted considerable attention due to the advantages of extending coverage and improving connectivity for long-range communications. Specifically, in the scenario where the access point (AP) is mobile, a UAV needs to find an efficient path to guarantee the connectivity of the relay link. Motivated by this fact, this paper proposes an optimal design for beamforming (BF) and UAV path planning. First of all, we study a dual-hop amplify-and-forward (AF) wireless relay network, in which a UAV is used as relay between a mobile AP and a fixed base station (BS). In the network, both of the AP and the BS are equipped with multiple antennas, whereas the UAV has a single antenna. Then, we obtain the output signal~to-noise ratio (SNR) of the dual-hop relay network. Based on the criterion of maximizing the output SNR, we develop an optimal design to obtain the solution of the optimal BF weight vector and the UAV heading angle. Next, we derive the closed-form outage probability (OP) expression to investigate the performance of the dual-hop relay network conveniently. Finally, computer simulations show that the proposed approach can obtain nearly optimal flying path and OP performance, indicating the effectiveness of the proposed algorithm. Furthermore, we find that increasing the antenna number at the BS or the maximal heading angle can significantly improve the performance of the considered relay network.  相似文献   
10.
针对传统的分裂聚类算法删除连边会影响节点划分的问题,结合K-means算法的思想并加以改进,提出了一种以邻居节点为聚类备选集,所有社团中心节点同时聚类的同步聚类算法。该算法根据节点中心度和最短路变化率确定社团中心节点集,然后以中心节点为社团中心,以邻居节点为聚类备选集合进行聚类,完成社团的划分。将算法应用到Zachary网络中并与GN算法、Top Leader算法进行比较,仿真结果表明该算法对网络有较好的划分。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号