首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2348篇
  免费   551篇
  国内免费   392篇
航空   1966篇
航天技术   585篇
综合类   277篇
航天   463篇
  2024年   3篇
  2023年   62篇
  2022年   68篇
  2021年   131篇
  2020年   122篇
  2019年   96篇
  2018年   108篇
  2017年   122篇
  2016年   133篇
  2015年   107篇
  2014年   177篇
  2013年   127篇
  2012年   172篇
  2011年   162篇
  2010年   175篇
  2009年   202篇
  2008年   191篇
  2007年   173篇
  2006年   204篇
  2005年   116篇
  2004年   97篇
  2003年   83篇
  2002年   59篇
  2001年   54篇
  2000年   59篇
  1999年   50篇
  1998年   51篇
  1997年   45篇
  1996年   22篇
  1995年   22篇
  1994年   23篇
  1993年   23篇
  1992年   16篇
  1991年   11篇
  1990年   9篇
  1989年   8篇
  1988年   2篇
  1984年   5篇
  1981年   1篇
排序方式: 共有3291条查询结果,搜索用时 15 毫秒
1.
The BeiDou global navigation satellite system (BDS-3) has established the Ka-band inter-satellite link (ISL) to realize a two-way ranging function between satellites, which provides a new observation technology for the orbit determination of BDS-3 satellites. Therefore, this study presents a BDS satellite orbit determination model based on ground tracking station (GTS) observations and ISL ranging observations firstly to analyze the impact of the ISL ranging observations on the orbit determination of BDS-3 satellites. Subsequently, considering the data fusion processing, the variance component estimation (VCE) algorithm is applied to the parameter estimation process of the satellite orbit determination. Finally, using the measured data from China’s regional GTS observations and BDS-3 ISL ranging observations, the effects of ISL ranging observations on the orbit determination accuracy of BDS-3 satellites are analyzed. Moreover, the impact of the VCE algorithm on the fusion data processing is evaluated from the aspects of orbit determination accuracy, Ka-band hardware delay parameter stability, and ISL ranging observation residuals. The results show that for China’s regional GTSs, the addition of BDS-3 ISL ranging observations can significantly improve the orbit determination accuracy of BDS-3 satellites. The observed orbit determination accuracy of satellite radial component is improved from 48 cm to 4.1 cm. In addition, when the initial weight ratio between GTS observations and ISL ranging observations is not appropriate, the various indicators which include orbit determination accuracy, ISL hardware delay, and ISL observation residuals were observed to have improved after the adjustment of the VCE algorithm. These results validate the effectiveness of the VCE algorithm for the fusion data processing of the GTS observations and ISL ranging observations.  相似文献   
2.
《中国航空学报》2021,34(4):241-252
Particle-tool interactions, which govern the synergetic deformation of SiC particle reinforced Al matrix composites under mechanical machining, strongly depend on the geometry of particle position residing on cutting path. In the present work, we investigate the influence of cutting path on the machinability of a SiCp/Al composite in multi-step ultra-precision diamond cutting by combining finite element simulations with experimental observations and characterization. Be consistent with experimentally characterized microstructures, the simulated SiCp/Al composite is considered to be composed of randomly distributed polygonally-shaped SiC particles with a volume fraction of 25vol%. A multi-step cutting strategy with depths of cut ranging from 2 to 10 μm is adopted to achieve an ultimate depth of cut of 10 μm. Intrinsic material parameters and extrinsic cutting conditions utilized in finite element simulations of SiCp/Al cutting are consistent with those used in corresponding experiments. Simulation results reveal different particle-tool interactions and failure modes of SiC particles, as well as their correlations with machining force evolution, residual stress distribution and machined surface topography. A detailed comparison between numerical simulation results and experimental data of multi-step diamond cutting of SiCp/Al composite reveals a substantial impact of the number of cutting steps on particle-tool interactions and machined surface quality. These findings provide guidelines for achieving high surface finish of SiCp/Al composites by ultra-precision diamond cutting.  相似文献   
3.
In this paper, on–off SDRE control approach is presented for spacecraft formation flying control around sun-earth L2 libration point. Orbits around libration points are significant targets for many space missions mainly because of efficient fuel consumption. Furthermore, less propellant usage can be achieved by considering optimal control approaches in spacecraft formation flying control design. Among various nonlinear and optimal control methods, SDRE has shown to be a popular controller in various missions due to the privileges including efficiency, accuracy and robustness. The spacecraft are assumed to have on–off thrusters as actuators. It requires them to be fed with a sequence of on–off pulses which is regarded as a challenge for spacecraft designers. Hence, the main contribution of this paper is designing an on–off SDRE approach for the formation flight around sun-earth L2 point with uncertainty with energy and accuracy considerations. Including on–off input as a constraint is not feasible for SDRE implementation because it makes the system non-affine. An alternative is utilizing an integral action technique and an auxiliary control to make the system affine which leads to on–off SDRE approach. It has also been shown that the proposed method is robust against parametric uncertainties of the states. Present study aims to design an energy-beneficial, simple and attractive controller for a complex nonlinear system with on–off inputs and uncertainty in CRTBP. Simulation results show that the on–off SDRE control could provide the formation flight around L2 point with high accuracy using less energy consumption.  相似文献   
4.
The effects of physical events on the ionosphere structure is an important field of study, especially for navigation and radio communication. The paper presents the spatio-temporal ionospheric TEC response to the recent annular solar eclipse on June 21, 2020, which spans across two continents, Africa and Asia, and 14 countries. This eclipse took place on the same day as the June Solstice. The Global Navigation Satellite System (GNSS) based TEC data of the Global Ionosphere Maps (GIMs), 9 International GNSS Service (IGS) stations and FORMOSAT-7/COSMIC-2 (F7/C2) were utilized to analyze TEC response during the eclipse. The phases of the TEC time series were determined by taking the difference of the observed TEC values on eclipse day from the previous 5-day median TEC values. The results showed clear depletions in the TEC time series on June 21. These decreases were between 1 and 9 TECU (15–60%) depending on the location of IGS stations. The depletions are relatively higher at the stations close to the path of annular eclipse than those farther away. Furthermore, a reduction of about ?10 TECU in the form of an equatorial plasma bubble (EPB) was observed in GIMs at ~20° away from the equator towards northpole, between 08:00–11:00 UT where its maximum phase is located in southeast Japan. Additionally, an overall depletion of ~10% was observed in F7/C2 derived TEC at an altitude of 240 km (hmF2) in all regions affected by the solar eclipse, whereas, significant TEC fluctuations between the altitudes of 100 km ? 140 km were analyzed using the Savitzky-Golay smoothing filter. To prove TEC depletions are not caused by space weather, the variation of the sunspot number (SSN), solar wind (VSW), disturbance storm-time (Dst), and Kp indices were investigated from 16th to 22nd June. The quiet space weather before and during the solar eclipse proved that the observed depletions in the TEC time series and profiles were caused by the annular solar eclipse.  相似文献   
5.
The comparison of the IRI model with the foF2 distribution in the equatorial anomaly region obtained by topside sounding onboard the Interkosmos-19 satellite has been carried out. The global distribution of foF2 in terms of LT-maps was constructed by averaging Intercosmos-19 data for summer, winter, and equinox. These maps, in fact, represent an empirical model of the equatorial anomaly for high solar activity F10.7 ~ 200. The comparison is carried out for the latitudinal foF2 profiles in the characteristic longitudinal sectors of 30, 90, 210, 270, and 330°, as well as for the longitudinal variations in foF2 over the equator. The largest difference between the models (up to 60%) for any season was found in the Pacific longitudinal sector of 210°, where there are a few ground-based sounding stations. Considerable discrepancies, however, are sometimes observed in the longitudinal sectors, where there are many ground-based stations, for example, in the European or Indian sector. The discrepancies reach their maximum at 00 LT, since a decay of the equatorial anomaly begins before midnight in the IRI model and after midnight according to the Interkosmos-19 data. The discrepancies are also large in the morning at 06 LT, since in the IRI model, the foF2 growth begins long before sunrise. In the longitudinal variations in foF2 over the equator at noon, according to the satellite data, four harmonics are distinguished in the June solstice and at the equinox, and three harmonics in the December solstice, while in the IRI model only two and one harmonics respectively are revealed. In diurnal variations in foF2 and, accordingly, in the equatorial anomaly intensity, the IRI model does not adequately reproduce even the main, evening extremum.  相似文献   
6.
In recent years, land surface temperature (LST) has become critical in environmental studies and earth science. Remote sensing technology enables spatiotemporal monitoring of this parameter on large scales. This parameter can be estimated by satellite images with at least one thermal band. Sentinel-3 SLSTR data provide LST products with a spatial resolution of 1 km. In this research, direct and indirect validation procedures were employed to evaluate the Sentinel-3 SLSTR LST products over the study area in different seasons from 2018 to 2019. The validation method was based on the absolute (direct) evaluation of this product with field data and comparison (indirect) evaluation with the MODIS LST product and the estimated LST using the non-linear split-window (NSW) algorithm. Also, two emissivity estimation methods, (1) NDVI thresholding method (NDVI-THM) and (2) classification-based emissivity method (CBEM), were used to estimate the LST using the NSW method according to the two thermal bands of Sentinel-3 images. Then, the accuracy of these methods in estimating LST was evaluated using field data and temporal changes of vegetation, which the NDVI-THM method generated better results. For indirect evaluation between the Sentinel-3 LST product, MODIS LST product, and LST estimated using NSW, four filters based on spatial and temporal separates between pairs of pixels and pixel quality were used to ensure the accuracy and consistency of the compared pairs of a pixel. In general, the accuracy results of the LST products of MODIS and Sentinel-3, and LST estimated using NSW showed a similar trend for LST changes during the seasons. With respect to the two absolute and comparative validations for the Sentinel-3 LST products, summer with the highest values of bias (?1.24 K), standard deviation (StDv = 2.66 K), and RMSE (2.43 K), and winter with the lowest ones (bias of 0.14 K, StDv of 1.13 K, and RMSE of 1.12 K) provided the worst and best results for the seasons in the period of 2018–2019, respectively. According to both absolute and comparative evaluation results, the Sentinel-3 SLSTR LST products provided reliable results for all seasons on a large temporal and spatial scale over our studied area.  相似文献   
7.
火星大气层的主要成分为二氧化碳,如果能够利用低温等离子体方法高效分解二氧化碳,使其转化为氧气和一氧化碳加以利用,可以大幅降低航天员生命保障相关载荷长途运输的成本,进一步提高生命保障能力。低温等离子体放电过程中会产生大量活性组分,可以在数百度温度下实现二氧化碳的高效解离,是具有很大潜力的二氧化碳解离与转化方式。设计了一种尺度在亚毫米级、功率输入为数瓦的直流微槽等离子体反应器,可以在较低气体温度下实现二氧化碳分解。测量了反应器电流、功率等放电参数,采用发射光谱确定了体系中激发态组分,分析了激发态粒子谱线强度随输入电压、稀释气体比例等反应器工作参数变化,利用氮气分子振转谱带测量了等离子体放电区振动温度和气体温度。研究表明,添加氩、氦、氮气均可以增强二氧化碳的分解,添加氦气可以促进二氧化碳的电离过程。稀释气体激发态因具有高能量,可以通过潘宁解离通道增强二氧化碳分解。氦组分激发态的能量高于二氧化碳电离能,可以促进二氧化碳的电离反应。微等离子体内存在强烈的振动 平动非平衡现象:振动温度约为4400~4800K,而气体温度仅为450 ~600K,表明可以通过合理的放电和结构设计,定向将能量注入到振动态,从而进一步促进二氧化碳的振动解离。  相似文献   
8.
《中国航空学报》2020,33(12):3206-3219
Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength. Whether the optimization results meet the actual needs mainly depends on the accuracy of the material properties and the boundary conditions, especially for a tiny Flapping-wing Micro Aerial Vehicle (FMAV) transmission system manufactured by 3D printing. In this paper, experimental and numerical computation efforts were undertaken to gain a reliable topology optimization method for the bottom of the transmission system. First, the constitutive behavior of the ultraviolet (UV) curable resin used in fabrication was evaluated. Second, a numerical computation model describing further verified via experiments. Topology optimization modeling considering nonlinear factors, e.g. contact, friction and collision, was presented, and the optimization results were verified by both dynamic simulation and experiments. Finally, detailed discussions on different load cases and constraints were presented to clarify their effect on the optimization. Our methods and results presented in this paper may shed light on the lightweight design of a FMAV.  相似文献   
9.
纵向波纹隔热屏气膜冷却特性实验   总被引:2,自引:0,他引:2  
王敏敏  赵熙  林莉  康清亮 《航空动力学报》2019,34(12):2648-2655
针对加力燃烧室纵向波纹隔热屏气膜冷却效果开展了细致的实验研究,利用红外热像仪测量了隔热屏壁面的温度分布,分析了隔热屏板型、吹风比、开孔率等参数对气膜冷却效率的影响。实验中板型选取了平板和纵向波纹隔热屏,吹风比变化范围是0.5~3.0,开孔率变化范围是1.4%~3.7%。结果表明:相比于平板隔热屏的气膜冷却效率沿程逐渐增加,纵向波纹隔热屏的气膜冷却效率随波纹板的起伏而起伏且大于平板隔热屏;随着吹风比的增加气膜冷却效率逐渐加大,在吹风比为3.0时达到最大值;气膜冷却效率在波峰处低,波谷处高,整体上随波纹板的起伏而波动,吹风比越小,气膜冷却效率随波纹板的起伏变化越明显;高吹风比(吹风比为2.0~3.0)下,气膜冷却效率沿程变化与增幅较为缓慢;整体上,随着开孔率的增加气膜冷却效率逐渐加大,小开孔率(开孔率为1.4%、2.7%)下的气膜冷却效率相差不大,但在次流背风侧,开孔率小的气膜冷却效率要小于开孔率大的气膜冷却效率。   相似文献   
10.
We examined performance of two empirical profile-based ionospheric models, namely IRI-2016 and NeQuick-2, in electron content (EC) and total electron content (TEC) representation for different seasons and levels of solar activity. We derived and analyzed EC estimates in several representative altitudinal intervals for the ionosphere and the plasmasphere from the COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. It allows us to estimate a quantitative impact of the ionospheric electron density profiles formulation in several altitudinal intervals and to examine the source of the model-data discrepancies of the EC specification from the bottom-side ionosphere towards the GPS orbit altitudes. The most pronounced model-data differences were found at the low latitude region as related to the equatorial ionization anomaly appearance. Both the IRI-2016 and NeQuick-2 models tend to overestimate the daytime ionospheric EC and TEC at low latitudes during all seasons of low solar activity. On the contrary, during high solar activity the model results underestimated the EC/TEC observations at low latitudes. We found that both models underestimated the EC for the topside ionosphere and plasmasphere regions for all levels of solar activity. For low solar activity, the underestimated EC from the topside ionosphere and plasmasphere can compensate the overestimation of the ionospheric EC and, consequently, can slightly decrease the resulted model overestimation of the ground-based TEC. For high solar activity, the underestimated EC from the topside ionosphere and plasmasphere leads to a strengthening of the model underestimation of the ground-based TEC values. We demonstrated that the major source of the model-data discrepancies in the EC/TEC domain comes from the topside ionosphere/plasmasphere system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号