首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   73篇
  国内免费   17篇
航空   187篇
航天技术   17篇
综合类   13篇
航天   48篇
  2023年   4篇
  2022年   6篇
  2021年   2篇
  2020年   4篇
  2019年   13篇
  2018年   2篇
  2017年   5篇
  2016年   9篇
  2015年   8篇
  2014年   11篇
  2013年   7篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2009年   12篇
  2008年   16篇
  2007年   16篇
  2006年   13篇
  2005年   16篇
  2004年   11篇
  2003年   17篇
  2002年   4篇
  2001年   5篇
  2000年   9篇
  1999年   3篇
  1998年   7篇
  1997年   9篇
  1996年   8篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
排序方式: 共有265条查询结果,搜索用时 171 毫秒
1.
采用机械研磨的方法制备氧化石墨烯(GO)改性环氧树脂(GH81),利用光学显微镜对GO在环氧树脂(H81)中的分散情况进行分析,通过流变仪和差示扫描量热仪对H81和GH81的热熔行为和固化行为进行表征。结果表明:GO均匀分散在基体树脂中,GO的加入不影响基体树脂的熔融黏度和固化条件;以GH81为基体树脂的碳纤维复合材料GH81-300的0°方向拉伸强度、弯曲强度和压缩强度分别为2270 MPa、2239 MPa和1529 MPa,分别较未添加GO时提高了6.4%、7.2%和7.1%。  相似文献   
2.
以2 400 tex的玻璃纤维为原料,在SGA598型三维织机上,采用三维浅交弯联结构制备了一种装甲车体内饰用轻质复合材料预制件。将环氧树脂E51和固化剂聚醚胺WHR-H023以质量比3∶1的比例组成树脂体系,并将复合材料预制件与配制好的树脂体系以质量比为2∶1、3∶2、1∶1、2∶3、1∶2的比例进行手糊复合成型,制成装甲车体内饰用轻质复合材料。借助Instron 3385H型万能材料试验机对材料的弯曲能进行测试,研究树脂含量对复合材料弯曲性能的影响;并通过扫描电子显微镜(SEM)观察材料的断裂界面,研究材料的弯曲破坏机理。结果表明,三维浅交弯联复合材料具有优异的力学性能,织物与树脂的质量比为1∶1时材料的弯曲强度与模量均达到最大值;材料的破坏模式主要为脆性破坏,具体表现为树脂基体的碎裂以及纤维的抽拔及断裂。  相似文献   
3.
碳纤维复合壳体用基体环氧树脂研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了固体火箭发动机碳纤维缠绕用基体环氧树脂的种类、选择原则及适于碳纤维缠绕用基体树脂的研究进展.  相似文献   
4.
5.
大量使用树脂基复合材料大幅提高了大涵道比发动机多方面的优异性能。树脂基复合材料的使用需要材料、设计、工艺一体化协作。采用先进的复合材料制造技术,可提高性能、降低制造成本。要想为民用航空市场提供安全、舒适、节能、环保、具有竞争力的中短航程单通道商用干线飞机,使用复合材料是必经之路。  相似文献   
6.
自修复聚合物基复合材料作为一种新颖的智能结构功能材料,通过实现微裂纹的自愈合,为预防潜在的危害提供了一种新方法,在一些重要工程和尖端技术领域孕育着巨大的发展前景和应用价值。通过研究自修复体系的结构与修复性能的关系,修复剂的修复机理,以及修复过程的动力学,从而研制出在使用环境下可长期储存,对裂纹能进行快速高效自修复的材料,无论在理论上还是实践上都具有重要意义。  相似文献   
7.
以丁腈橡胶(CTBN)为增韧剂对环氧树脂(F51)进行增韧改性,通过FTIR、TG以及力学性能测试研究了丁腈橡胶对环氧树脂固化反应、热稳定性能和力学性能的影响,并分析了其增韧机理;分别采用燃气流剪切烧蚀试验和电弧风动烧蚀实验考核了低密度烧蚀材料的烧蚀性能。结果表明:经CTBN改性后,两者的分子链产生了一定程度的交联;树脂基体的拉伸、弯曲性能有所下降,但韧性得到了增强;热稳定性大大提高,增韧后的F51树脂在800℃时的残重率由增韧前的23%提高到了54%;低密度烧蚀材料的抗剪切、抗剥蚀能力得到了增强,且碳层的尺寸稳定性也得到了改善,烧蚀性能提高。  相似文献   
8.
石墨烯用于提高材料抗原子氧剥蚀性能   总被引:1,自引:0,他引:1  
提出新型二维纳米材料石墨烯在航天器上的应用.首先采用超声空化法制备得到石墨烯,然后将其添加到环氧树脂中,采用共混法制成纳米复合材料.热失重分析显示材料的热稳定性能有所提高.在地面模拟设备中对环氧树脂和纳米复合材料进行了原子氧效应试验,并对试验前后材料的质量损失、表面形貌和表面成分等进行了分析,结果表明纳米复合材料相对于纯环氧树脂,其抗原子氧剥蚀性能有明显提高.  相似文献   
9.
Epocast 50-A1/946 epoxy was primarily developed for joining and repairing of composite aircraft structural components. The objective of the present work is to modify the Epocast epoxy resin by different nanofillers infusion. The used nanofillers include multi-walled carbon nanotubes(MWCNTs), SiC and Al2O3 nanoparticles. The nanofillers with different weight percentages are ultrasonically dispersed in the epoxy resin. The sonication time and amplitude for MWCNTs are reduced compared to Al2O3 and SiC nanoparticles to avoid the damage of MWCNTs during sonication processes. The fabricated neat epoxy and twelve nanocomposite panels were characterized via standard tension and in-plane shear tests. The experimental results show that the nanocomposites materials with 0.5wt% MWCNTs, 1.5wt% SiC and 1.5wt% Al2O3 nanoparticles have the highest improvement in the tensile properties compared to the other nanofiller loading percentages.The improvements in the shear properties of these nanocomposite materials were respectively equal to 5.5%, 4.9%, and 6.3% for shear strengths, and 10.3%, 16.0%, and 8.1% for shear moduli. The optimum nanofiller loading percentages will be used in the following papers concerning their effect on the bonded joints/repairs of carbon fiber reinforced composites.  相似文献   
10.
以异氰酸酯为固化剂固化环氧树脂,通过比较不同固化条件下固化物结构的差异,研究了异氰酸酯与环氧树脂的反应历程;改变异氰酸酯/环氧树脂体系的化学计量比(I/E),采用FTIR/ATR、DSC、DMTA等研究了固化产物的结构与性能。结果表明,异氰酸酯与环氧树脂的固化历程随着温度的升高可分为三个阶段,第一阶段为异氰酸酯的三聚反应;第二阶段是一个复杂的过程,首先环氧树脂和异氰酸酯可反应生成嗯唑烷酮结构,通过嗯唑烷酮环扩链得到端畀氰酸酯基低聚物,可继续发生三聚反应;第三阶段为异氰脲酸酯与残余的环氧基团反应生成嗯唑烷酮结构,异氰脲酸酯六元环向噁唑烷酮五元环的转化是一个可逆的过程。不同的I/E比例可得到结构不同的固化物,不同的结构导致固化物性能的差异:当(I/E)=1.8时,综合力学性能良好,异氰酸酯/环氧树脂/玻璃纤维复合材料的弯曲强度、弯曲模量、层剪强度分别为652.53、33270.63和31.66MPa,优于甲基四氢苯酐/环氧树脂/玻璃纤维复合材料力学性能;当I/E=2.0时,固化物T_g达到了305℃,明显优于传统的环氧树脂固化体系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号