首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  完全免费   1篇
  航空   18篇
  2015年   1篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1999年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
芳纶纤维增强PPS复合材料耐水性能的研究   总被引:5,自引:0,他引:5  
利用芳纶纤维对PPS复合材料进行增强改性,利用化学处理方法在纤维表面引入环氧基,以改善纤维与基体间的界面性能。结果表明:在相同纤维含量下,纤维长度增加可减少应力集中,有利于力学性能提高,纤维表面接枝环氧基团后,复合材料界面性能提高,水难以沿界面掺入,从而使得同一条件下耐高温热水性能提高。  相似文献
2.
芳纶纤维湿法缠绕容器研究进展   总被引:4,自引:1,他引:3  
研究了高性能F-12芳纶纤维的湿法成型工艺,研制了与F-12纤维匹配性良好的湿法环配方,同时进行了φ150mm、φ480mm容器的湿法成型工艺参数的优化试验。初步探讨了湿法成型中的含胶量控制技术。结果表明,HR18湿法配方与F-12纤维的匹配性和工艺性良好,而且湿法成型工艺参数经优化后可明显提高容器的特性系数PV/Wc值。  相似文献
3.
原苏联芳纶纤维性能及初步应用研究   总被引:3,自引:1,他引:2  
本文叙述了原苏联生产的ApMoc-Ⅱ-A、ApMoc-Ⅲ、CBM-5三种牌号的芳纶纤维部分物理性能,复丝力学性能以及纤维复合材料缠绕压力容器的应用研究,同时与各国的芳纶纤维进行对照,结果表明ApMoc-Ⅱ-A、ApMoc-Ⅲ是两种优于其他国家芳纶性能的芳纶纤维;ApMoc-Ⅱ/AE-4、ApMoc-Ⅲ/AE-4复合材料缠绕出来的Φ150mm、Φ480mm试验容器特性系数PV/WC值分别达到34km和30km,纤维强度转化率分别达到68.9%、67.l%,优于Kevlar-49(1965型)/AE-4复合材料缠绕出来的压力容器。  相似文献
4.
F—12纤维预浸渍成型工艺研究   总被引:3,自引:0,他引:3  
针对F-12纤维浸渍环氧树脂基体制做预浸胶带性能要求和工艺特点,研究了影响基体含量、挥发份、胶带外观结构的主要工艺因素和控制范围。结果表明,采用优化后的工艺参数生产的预浸胶带质量稳定,缠绕的φ150mm压力容器特性系数达到37km。  相似文献
5.
芳纶纤维/环氧树脂的湿热老化   总被引:3,自引:0,他引:3  
分析了芳纶纤维/环氧树脂分子链结构与聚合态结构,论述了湿热对芳纶纤维/环氧树脂性能的影响,指出了研究芳纶纤维/环氧树脂老化的方法。  相似文献
6.
提高芳纶纤维强度转化率的研究   总被引:2,自引:1,他引:1  
从树脂基体、纤维表面处理、缠绕张力、树脂含量四个方面,研究了提高芳纶纤维强度转化率的方法。结果表明:基体性能对纤维强度转化率影响较大;表面处理可以改善界面性能;缠绕张力及树脂含量最佳取值范围则需通过实验确定。  相似文献
7.
芳纶纤维及其复合材料的最新进展   总被引:1,自引:0,他引:1  
芳纶纤维具有密度小、抗拉强度高、抗拉模量较高、耐曲折、耐疲劳等性能。自70年代初,美国杜邦公司开发了凯夫拉-29和凯夫拉-49纤维以来,荷兰、日本、前苏联和我国也开发了这种有机纤维。近年来,新品种相继问世。如超高强型凯夫拉-129的抗拉强度比29型提高20%,更具有韧性,主要用于航天工业制作结构复合材料构件;高模型凯夫拉-149的抗拉模量比49型提高40%,而吸水率只有49型的25%~30%,适用于直  相似文献
8.
碳纤维与芳纶纤维复合材料机械加工刀具选用   总被引:1,自引:0,他引:1  
通过对复合材料特性和加工机理的分析,论述了复合材料机械加工对刀具材质、结构和几何参数的要求,介绍了几种适合于碳纤维和芳纶纤维复合材料机械加工的钻削和铣削刀具.  相似文献
9.
芳纶纤维/环氧树脂复合材料的吸湿应力分析   总被引:1,自引:0,他引:1  
利用Ansys有限元软件,采用纤维随机分布模型,对在环境温度t=80℃、相对湿度RH=90%条件下的芳纶纤维/环氧树脂复合材料吸湿后的水分分布进行了模拟计算,计算结果与从材料吸湿实验中所得到的结果基本一致.根据模拟计算得到的水分浓度场对复合材料内部的吸湿应力进行了研究.结果表明:有限元方法可以比较准确地模拟复合材料在湿热环境下的水分吸收过程;复合材料内的水分浓度随老化时间延长而增大,吸湿应力也随之升高,在纤维和基体界面处的应力最大,可达50 MPa以上.  相似文献
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号