排序方式: 共有23条查询结果,搜索用时 0 毫秒
1.
长度单位定义是建立在光直线传播、光速在真空中为常数,以及光速各向同性的理论基础上,二维球面上的直线,在三维空间中是弯曲的测地线;三维空间的直线,在四维时空中也是弯曲的测地线。长度单位的定义是否适用四维时空呢?SI秒和SI米的定义适用于全域时空,但使用它们必需明确原时和坐标时的区别。爱因斯坦的狭义相对论以及光速不变原理只适用于惯性系,不适用于非惯性系。本文以转盘上的非惯性坐标系为例,利用广义相对论的坐标变换和时空度规运算,揭示了非惯性坐标系上的时空弯曲和光的非直线传播现象。计算了非惯性坐标系上Sagnac效应对卫星和地面站双向测距的影响,初步研究表明空间测量范围从局域推广到全域的话,诸如引力红移、相对速度效应、Sagnac效应等将会成为空间长度测量不确定度的影响因素,因此空间计量理论必须建立在广义相对论基础之上,用四维时空观念理解空间距离测量问题。 相似文献
2.
3.
4.
5.
MJS-8型30秒计时器,采用8051单片机,利用可编程通用,键盘和显示器接口器件8279来完成整个系统。本文主要介绍软件部分的设计。 相似文献
6.
UTC是国际标准时间.UTC(NTSC)是UTC的物理实现之一,是我国的国家标准时间,也是我国一切授时业务的基础.目前,广泛应用的GNSS授时精度可达10~50ns.随着现代信息社会的快速发展,数十纳秒的授时精度及事后处理的工作模式已无法满足需求.针对上述问题,设计了基于iGMAS的国家标准时间精密授时系统(PTS).PTS的基本原理为:服务端基于iGMAS平台生成实时轨道及以UTC(NTSC)为参考的实时卫星钟差,用户端结合实时产品及伪距、载波相位观测数据,解算本地钟与UTC(NTSC)偏差.此外,搭建了PTS原型系统并展开测试分析,测试结果显示,基于PTS原型系统,各用户站授时精度均优于1ns.与GNSS授时技术相比,PTS将授时精度提高了1~2个量级,且基于国家标准时间授时,成本低廉,易于实现,具有应用前景. 相似文献
7.
星上时间获取精确度直接影响了航天器各项自主功能的执行.准确获取星上时间的主要挑战来自时间获取动作与时间维护动作之间的数据竞争.在中断嵌套导致高优先级中断与秒中断间发生数据竞争时,需要根据秒中断被嵌套的状态决定在高优先级中断中获取星上时间时是否进行进秒修正.在现有适用于高优先级中断嵌套秒中断场景下的星上时间获取方法中,依... 相似文献
8.
9.
本文阐述了利用卫星电视信号的秒脉冲对同步卫星定位的若干方法。给出了在各种观测方法中,地面测站与同步卫星所构成的几何图形强度因子的计算公式。并对具体问题进行了分析计算,取得了一些结论。关键词 相似文献
10.
针对远程信号监测系统对测控仪器的要求,文中给出了在ISA卡上集成高精度频率计/信号源的设计原理与实现方法。该设计采用CPLD电路,对恒温晶振的输出信号和GPS的PPS信号进行自适应处理,克服了在实际应用中GPS秒脉冲信号易受干扰、晶振存在不确定漂移等因素造成的误差,将获得的高精度时钟信号和GPS秒脉冲信号作为基准信号用在测频电路和信号源中,使频率计和信号源可以长时间保持很高的精度,提高了系统的性能和可靠性。 相似文献