首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   6篇
航空   8篇
航天   10篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
本文采用激光阴影高速摄影、扫描电子显微镜、X光电子能谱,对含和不含CaCO_(3)的三种夹心件及SO4-5A PU复合推进剂的燃烧过程、燃面形貌、化学成分和覆盖分数分别进行了研究和测定。结果表明:CaCO_(3)在低压下(〈1.96MPa)提高AP的燃速,在高压下(〉1.96MPa)起降速作用;CaCO_(3)与AP反应生成CaCl_2,并促使AP熔化;燃面上CaCl_2含量随压强上升而增加;PU熔化流动对AP表面的覆盖在mesa区内随压强而升高,在非mesa区的低压区也存在。基于以上实验结果,对含CaCO_(3)的PU负压强指数推进剂的燃烧机理进行了讨论。  相似文献   
2.
本文介绍以 CO_2激光器为辐射热源来研究在1.0,2.0,3.0,4.0MPa 压力下热辐射对四种复合推进剂燃速的影响.实验结果表明,燃速随着辐射热流的增加而增加;在恒辐射热流的作用下,PU 和 HTPB 推进剂在有、无热辐射时的燃速比随压力的变化趋势是不同的,前者随压力上升而增大,后者则减小;Al 粉的加入不改变上述趋势,但改变燃速比的大小.文中还运用 GDF 燃速模型。研究了药条燃速在有、无热辐射时的相关性及其随压力的变化关系.  相似文献   
3.
本文简要介绍了固体火箭发动机水熄火多次起动研究的试验系统,给出了发动机水熄火的初步试验结果。试验结果分析认为,双基推进剂比含铝量较高的复合推进剂容易实现可靠水熄火,而且有可能在较短的时间里应用于某些固体火箭发动机的多次起动,本研究为固体发动机多次起动技术的进一步深入研究打下了基础。  相似文献   
4.
5.
本文对那些最强烈影响侵蚀燃速随大发动机尺寸而变化的因素作用进行了测量,提出了侵蚀燃烧临界条件的尺度准则,给出了控制侵蚀燃烧现象有关参数变化时,对侵蚀开始出现的转变尺度临界条件度量的一系列发动机试验结果。试验结果和分析表明,侵蚀燃烧随推进剂燃速、发动机压力、质量流率的变化趋势和已有文献报导的结果相一致。绘出燃速增量与横向流速、比质量流率或横向流雷诺数的关系曲线,并不能提供必需的临界条件尺度相关性。对于湍流转变和侵蚀临界条件的速度分布来说,横向流雷诺数与燃面退移雷诺数间的尺寸相关性,说明了发动机中位置/流动历程的影响。将燃面退移雷诺数转变成轴向位置为特征尺寸的雷诺数时,可将临界条件尺度位置的依赖性归并为一条幂次相关曲线。  相似文献   
6.
在实验研究的基础上,提出固体火箭发动机液体喷射熄火模型。该模型综合考虑了固体推进剂的瞬态燃烧、射流换热、液滴蒸发和发动机内弹道等耦合作用,成功地实现了对液体喷射熄火过程(临界参数和熄火用液量)的理论预示。理论研究发现液体喷射瞬变燃烧存在着临界喷射压降。当喷射压降大于该临界值时,熄火才能实现。随着推进剂能量的升高,临界喷射压降增加。随着喷射压降的增加,熄火用液量和降压速率分别下降和升高,其变化率逐渐减小。熄火用液量不存在最小值,因而在工程设计中,必须合理选择喷液量和喷射压强这两个设计参数。理论预示与实验结果吻合良好。  相似文献   
7.
殷金其  王克秀  李葆萱  陈步学 《推进技术》1988,9(4):45-50,78,79
本文通过试件燃烧表面激光阴影高速摄影、燃面扫描电镜分析和X光电子能谱测试结果,提出了CaCO_3与过氯酸铵(AP)的作用机理,解释了CaCO_3对AP的低压(<1.96MPa)增速高压(>1.96MPa)降速的现象.  相似文献   
8.
本文运用固体火箭发动机液体喷射熄火模型 ,确定了液体喷射熄火液量 ,研究了推进剂能量、压强指数、燃烧室压强、液体性质和喷射压降等多种因素的影响。  相似文献   
9.
本文较全面地介绍了国外研究固体火箭发动机多次起动的方案,包括液控型、单室分段型、双室型、旋流阀控制型、枢轴式喷管型、全固体熄火型和水熄火型等,并分析了各方案的优缺点,指出了今后研究的方向。  相似文献   
10.
航天热防护材料的烧蚀特性研究   总被引:1,自引:0,他引:1  
介绍了运用 CO_2激光加热装置,对聚四氟乙烯(Teflon)和热防护烧蚀材料 AT2的烧蚀特性研究.研究发现聚四氟乙烯的烧蚀率随热流的上升而增加;随氮气压强和流量的上升而下降;烧蚀过程产生的凝胶区和激光支持气相火焰区,与热流、环境气体种类及压强有关,凝胶区厚度随热流上升而下降,当热流很高时,却趋于一个常数;烧蚀表面温度随热流上升而升高,在本研究条件下,在600~700℃之间.AT2材料的温度和碳化层厚度,随加热时间而增大,随氮气压强的增加而减小.对入射激光束反射强的表面,碳化时的最大温度较低,碳化层的厚度较小.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号